File size: 4,504 Bytes
da784c8
efe44f0
da784c8
 
efe44f0
18f610c
da784c8
 
 
efe44f0
46da343
 
 
 
 
efe44f0
 
 
b2de139
5bb120f
587157c
 
5bb120f
efe44f0
 
a1130ae
 
 
 
 
 
5bb120f
a1130ae
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
efe44f0
 
a1130ae
 
 
 
 
efe44f0
a1130ae
 
 
 
efe44f0
a1130ae
 
 
 
 
 
efe44f0
a1130ae
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
efe44f0
 
a1130ae
efe44f0
 
a1130ae
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
import os
from threading import Thread
from typing import Iterator

import gradio as gr
import spaces
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
import subprocess

subprocess.run(
    "pip install flash-attn --no-build-isolation",
    env={"FLASH_ATTENTION_SKIP_CUDA_BUILD": "TRUE"},
    shell=True,
)

DESCRIPTION = '''
<div>
<h1 style="text-align: center;">Lexora-Lite-3B</h1>
<p>This Space demonstrates the instruction-tuned model <a href="https://huggingface.co/DeepMount00/Lexora-Lite-3B"><b>Lexora-Lite-3B Chat ITA</b></a>.</p>
</div>
<div>
  <p>This model, <strong>DeepMount00/Lexora-Lite-3B</strong>, is currently the best open-source large language model for the Italian language. You can view its ranking and compare it with other models on the leaderboard at <a href="https://huggingface.co/spaces/FinancialSupport/open_ita_llm_leaderboard"><b>this site</b></a>.</p>
</div>
'''
MAX_MAX_NEW_TOKENS = 2048
DEFAULT_MAX_NEW_TOKENS = 1024
MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "4096"))

device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")

model_id = "DeepMount00/Lexora-Lite-3B"
tokenizer = AutoTokenizer.from_pretrained(model_id, trust_remote_code=True,)
model = AutoModelForCausalLM.from_pretrained(
    model_id,
    device_map="auto",
    torch_dtype=torch.bfloat16,
    attn_implementation="flash_attention_2",
    trust_remote_code=True,
)
model.eval()


@spaces.GPU(duration=90)
def generate(
    message: str,
    chat_history: list[tuple[str, str]],
    system_message: str = "",
    max_new_tokens: int = 2048,
    temperature: float = 0.0001,
    top_p: float = 1.0,
    top_k: int = 50,
    repetition_penalty: float = 1.0,
) -> Iterator[str]:
    conversation = [{"role": "system", "content": system_message}]
    for user, assistant in chat_history:
        conversation.extend(
            [
                {"role": "user", "content": user},
                {"role": "assistant", "content": assistant},
            ]
        )
    conversation.append({"role": "user", "content": message})

    input_ids = tokenizer.apply_chat_template(conversation, add_generation_prompt=True, return_tensors="pt")
    if input_ids.shape[1] > MAX_INPUT_TOKEN_LENGTH:
        input_ids = input_ids[:, -MAX_INPUT_TOKEN_LENGTH:]
        gr.Warning(f"Trimmed input from conversation as it was longer than {MAX_INPUT_TOKEN_LENGTH} tokens.")
    input_ids = input_ids.to(model.device)

    streamer = TextIteratorStreamer(tokenizer, timeout=20.0, skip_prompt=True, skip_special_tokens=True)
    generate_kwargs = dict(
        {"input_ids": input_ids},
        streamer=streamer,
        max_new_tokens=max_new_tokens,
        do_sample=True,
        top_p=top_p,
        top_k=top_k,
        temperature=temperature,
        num_beams=1,
        repetition_penalty=repetition_penalty,
    )
    t = Thread(target=model.generate, kwargs=generate_kwargs)
    t.start()

    outputs = []
    for text in streamer:
        outputs.append(text)
        yield "".join(outputs)


chat_interface = gr.ChatInterface(
    fn=generate,
    additional_inputs=[
        gr.Textbox(
            value="",
            label="System message",
            render=False,
        ),        
        gr.Slider(
            label="Max new tokens",
            minimum=1,
            maximum=MAX_MAX_NEW_TOKENS,
            step=1,
            value=DEFAULT_MAX_NEW_TOKENS,
        ),
        gr.Slider(
            label="Temperature",
            minimum=0,
            maximum=4.0,
            step=0.1,
            value=0.001,
        ),
        gr.Slider(
            label="Top-p (nucleus sampling)",
            minimum=0.05,
            maximum=1.0,
            step=0.05,
            value=1.0,
        ),
        gr.Slider(
            label="Top-k",
            minimum=1,
            maximum=1000,
            step=1,
            value=50,
        ),
        gr.Slider(
            label="Repetition penalty",
            minimum=1.0,
            maximum=2.0,
            step=0.05,
            value=1.0,
        ),
    ],
    stop_btn=None,
    examples=[
        ["Ciao! Come stai?"],
    ],
    cache_examples=False,
)

with gr.Blocks(css="style.css", fill_height=True, theme="soft") as demo:
    gr.Markdown(DESCRIPTION)
    gr.DuplicateButton(value="Duplicate Space for private use", elem_id="duplicate-button")
    chat_interface.render()

if __name__ == "__main__":
    demo.queue(max_size=20).launch()