Spaces:
Sleeping
Sleeping
File size: 8,432 Bytes
da784c8 efe44f0 da784c8 efe44f0 18f610c da784c8 efe44f0 46da343 efe44f0 f24ac48 4d7115d c1e9709 f24ac48 4d7115d f24ac48 4d7115d f24ac48 4d7115d f24ac48 4d7115d f24ac48 4d7115d c1e9709 f24ac48 c1e9709 f24ac48 c1e9709 f24ac48 c1e9709 f24ac48 c1e9709 f24ac48 c1e9709 f24ac48 c1e9709 f24ac48 c1e9709 f24ac48 c1e9709 f24ac48 c1e9709 f24ac48 4d7115d f24ac48 4d7115d f24ac48 4d7115d f24ac48 4d7115d f24ac48 4d7115d f24ac48 c1e9709 efe44f0 f24ac48 efe44f0 a1130ae f24ac48 4d7115d c1e9709 4d7115d f24ac48 4d7115d f24ac48 a71fb86 f24ac48 a71fb86 f24ac48 a71fb86 f24ac48 a71fb86 f24ac48 a71fb86 f24ac48 a71fb86 f24ac48 a71fb86 f24ac48 4d7115d f24ac48 efe44f0 4d7115d c1e9709 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 |
import os
from threading import Thread
from typing import Iterator
import gradio as gr
import spaces
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
import subprocess
subprocess.run(
"pip install flash-attn --no-build-isolation",
env={"FLASH_ATTENTION_SKIP_CUDA_BUILD": "TRUE"},
shell=True,
)
# Constants and model initialization code remains the same
MAX_MAX_NEW_TOKENS = 2048
DEFAULT_MAX_NEW_TOKENS = 1024
MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "4096"))
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
model_id = "DeepMount00/Lexora-Lite-3B"
tokenizer = AutoTokenizer.from_pretrained(model_id, trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained(
model_id,
device_map="auto",
torch_dtype=torch.bfloat16,
attn_implementation="flash_attention_2",
trust_remote_code=True,
)
model.eval()
CUSTOM_CSS = """
.container {
max-width: 1000px !important;
margin: auto !important;
}
.header {
text-align: center;
margin-bottom: 1rem;
padding: 1rem;
}
.header h1 {
font-size: 2rem;
font-weight: 600;
color: #1e293b;
margin-bottom: 0.5rem;
}
.header p {
color: #64748b;
font-size: 1rem;
}
.chat-container {
border-radius: 0.75rem;
background: white;
box-shadow: 0 1px 3px 0 rgb(0 0 0 / 0.1);
height: calc(100vh - 200px);
display: flex;
flex-direction: column;
}
.message-container {
padding: 1rem;
margin-bottom: 0.5rem;
}
.user-message {
background: #f8fafc;
border-left: 3px solid #2563eb;
padding: 1rem;
margin: 0.5rem 0;
border-radius: 0.5rem;
}
.assistant-message {
background: white;
border-left: 3px solid #64748b;
padding: 1rem;
margin: 0.5rem 0;
border-radius: 0.5rem;
}
.controls-panel {
position: fixed;
right: 1rem;
top: 1rem;
width: 300px;
background: white;
padding: 1rem;
border-radius: 0.5rem;
box-shadow: 0 1px 3px 0 rgb(0 0 0 / 0.1);
z-index: 1000;
display: none;
}
.controls-button {
position: fixed;
right: 1rem;
top: 1rem;
z-index: 1001;
background: #2563eb !important;
color: white !important;
padding: 0.5rem 1rem !important;
border-radius: 0.5rem !important;
font-size: 0.875rem !important;
font-weight: 500 !important;
}
.input-area {
border-top: 1px solid #e2e8f0;
padding: 1rem;
background: white;
border-radius: 0 0 0.75rem 0.75rem;
}
.textbox {
border: 1px solid #e2e8f0 !important;
border-radius: 0.5rem !important;
padding: 0.75rem !important;
font-size: 1rem !important;
box-shadow: 0 1px 2px 0 rgb(0 0 0 / 0.05) !important;
}
.textbox:focus {
border-color: #2563eb !important;
outline: none !important;
box-shadow: 0 0 0 2px rgba(37, 99, 235, 0.2) !important;
}
.submit-button {
background: #2563eb !important;
color: white !important;
padding: 0.5rem 1rem !important;
border-radius: 0.5rem !important;
font-size: 0.875rem !important;
font-weight: 500 !important;
transition: all 0.2s !important;
}
.submit-button:hover {
background: #1d4ed8 !important;
}
"""
DESCRIPTION = '''
<div class="header">
<h1>Lexora-Lite-3B Chat</h1>
<p>An advanced Italian language model ready to assist you</p>
</div>
'''
# Generate function remains the same
@spaces.GPU(duration=90)
def generate(
message: str,
chat_history: list[tuple[str, str]],
system_message: str = "",
max_new_tokens: int = 2048,
temperature: float = 0.0001,
top_p: float = 1.0,
top_k: int = 50,
repetition_penalty: float = 1.0,
) -> Iterator[str]:
conversation = [{"role": "system", "content": system_message}]
for user, assistant in chat_history:
conversation.extend(
[
{"role": "user", "content": user},
{"role": "assistant", "content": assistant},
]
)
conversation.append({"role": "user", "content": message})
input_ids = tokenizer.apply_chat_template(conversation, add_generation_prompt=True, return_tensors="pt")
if input_ids.shape[1] > MAX_INPUT_TOKEN_LENGTH:
input_ids = input_ids[:, -MAX_INPUT_TOKEN_LENGTH:]
gr.Warning(f"Trimmed input from conversation as it was longer than {MAX_INPUT_TOKEN_LENGTH} tokens.")
input_ids = input_ids.to(model.device)
streamer = TextIteratorStreamer(tokenizer, timeout=20.0, skip_prompt=True, skip_special_tokens=True)
generate_kwargs = dict(
{"input_ids": input_ids},
streamer=streamer,
max_new_tokens=max_new_tokens,
do_sample=True,
top_p=top_p,
top_k=top_k,
temperature=temperature,
num_beams=1,
repetition_penalty=repetition_penalty,
)
t = Thread(target=model.generate, kwargs=generate_kwargs)
t.start()
outputs = []
for text in streamer:
outputs.append(text)
yield "".join(outputs)
def create_chat_interface():
theme = gr.themes.Soft(
primary_hue="blue",
secondary_hue="slate",
neutral_hue="slate",
font=gr.themes.GoogleFont("Inter"),
radius_size=gr.themes.sizes.radius_sm,
)
with gr.Blocks(css=CUSTOM_CSS, theme=theme) as demo:
gr.Markdown(DESCRIPTION)
with gr.Row():
# Main chat column
with gr.Column(scale=3):
chat = gr.ChatInterface(
fn=generate,
additional_inputs=[
gr.Textbox(
value="",
label="System Message",
visible=False,
),
gr.Slider(
label="Temperature",
minimum=0,
maximum=1.0,
step=0.1,
value=0.0001,
visible=False,
),
gr.Slider(
label="Top-p",
minimum=0.05,
maximum=1.0,
step=0.05,
value=1.0,
visible=False,
),
gr.Slider(
label="Top-k",
minimum=1,
maximum=1000,
step=1,
value=50,
visible=False,
),
gr.Slider(
label="Repetition Penalty",
minimum=1.0,
maximum=2.0,
step=0.05,
value=1.0,
visible=False,
),
],
examples=[
["Ciao! Come stai?"],
["Raccontami una breve storia."],
["Qual è il tuo piatto italiano preferito?"],
],
cache_examples=False,
)
# Advanced settings panel
with gr.Column(scale=1, visible=False) as settings_panel:
gr.Markdown("### Advanced Settings")
gr.Slider(
label="Temperature",
minimum=0,
maximum=1.0,
step=0.1,
value=0.0001,
)
gr.Slider(
label="Top-p",
minimum=0.05,
maximum=1.0,
step=0.05,
value=1.0,
)
gr.Slider(
label="Top-k",
minimum=1,
maximum=1000,
step=1,
value=50,
)
gr.Slider(
label="Repetition Penalty",
minimum=1.0,
maximum=2.0,
step=0.05,
value=1.0,
)
if __name__ == "__main__":
demo = create_chat_interface()
demo.queue(max_size=20).launch() |