File size: 8,432 Bytes
da784c8
efe44f0
da784c8
 
efe44f0
18f610c
da784c8
 
 
efe44f0
46da343
 
 
 
 
efe44f0
f24ac48
4d7115d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c1e9709
 
 
 
 
 
f24ac48
4d7115d
 
f24ac48
4d7115d
 
f24ac48
 
4d7115d
f24ac48
 
4d7115d
 
f24ac48
 
 
4d7115d
 
c1e9709
f24ac48
c1e9709
f24ac48
 
 
 
c1e9709
 
f24ac48
 
 
c1e9709
 
 
f24ac48
 
 
 
 
c1e9709
 
 
f24ac48
 
 
 
 
c1e9709
 
f24ac48
 
 
 
 
 
 
 
 
 
 
c1e9709
 
f24ac48
 
 
 
 
c1e9709
 
f24ac48
c1e9709
f24ac48
 
c1e9709
 
f24ac48
 
 
 
 
4d7115d
 
f24ac48
 
4d7115d
f24ac48
 
 
4d7115d
 
f24ac48
 
4d7115d
f24ac48
4d7115d
 
f24ac48
 
 
 
 
 
 
 
 
 
 
 
c1e9709
 
 
efe44f0
f24ac48
 
 
efe44f0
 
a1130ae
f24ac48
4d7115d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c1e9709
4d7115d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f24ac48
4d7115d
 
 
 
 
 
f24ac48
 
 
 
 
 
 
 
 
 
 
 
a71fb86
 
 
 
f24ac48
a71fb86
f24ac48
 
a71fb86
 
f24ac48
a71fb86
 
 
 
f24ac48
a71fb86
 
 
 
 
 
 
f24ac48
a71fb86
 
 
 
 
 
 
f24ac48
a71fb86
f24ac48
4d7115d
 
 
 
 
 
 
 
f24ac48
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
efe44f0
 
4d7115d
c1e9709
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
import os
from threading import Thread
from typing import Iterator

import gradio as gr
import spaces
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
import subprocess

subprocess.run(
    "pip install flash-attn --no-build-isolation",
    env={"FLASH_ATTENTION_SKIP_CUDA_BUILD": "TRUE"},
    shell=True,
)

# Constants and model initialization code remains the same
MAX_MAX_NEW_TOKENS = 2048
DEFAULT_MAX_NEW_TOKENS = 1024
MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "4096"))

device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
model_id = "DeepMount00/Lexora-Lite-3B"

tokenizer = AutoTokenizer.from_pretrained(model_id, trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained(
    model_id,
    device_map="auto",
    torch_dtype=torch.bfloat16,
    attn_implementation="flash_attention_2",
    trust_remote_code=True,
)
model.eval()

CUSTOM_CSS = """
.container {
    max-width: 1000px !important;
    margin: auto !important;
}

.header {
    text-align: center;
    margin-bottom: 1rem;
    padding: 1rem;
}

.header h1 {
    font-size: 2rem;
    font-weight: 600;
    color: #1e293b;
    margin-bottom: 0.5rem;
}

.header p {
    color: #64748b;
    font-size: 1rem;
}

.chat-container {
    border-radius: 0.75rem;
    background: white;
    box-shadow: 0 1px 3px 0 rgb(0 0 0 / 0.1);
    height: calc(100vh - 200px);
    display: flex;
    flex-direction: column;
}

.message-container {
    padding: 1rem;
    margin-bottom: 0.5rem;
}

.user-message {
    background: #f8fafc;
    border-left: 3px solid #2563eb;
    padding: 1rem;
    margin: 0.5rem 0;
    border-radius: 0.5rem;
}

.assistant-message {
    background: white;
    border-left: 3px solid #64748b;
    padding: 1rem;
    margin: 0.5rem 0;
    border-radius: 0.5rem;
}

.controls-panel {
    position: fixed;
    right: 1rem;
    top: 1rem;
    width: 300px;
    background: white;
    padding: 1rem;
    border-radius: 0.5rem;
    box-shadow: 0 1px 3px 0 rgb(0 0 0 / 0.1);
    z-index: 1000;
    display: none;
}

.controls-button {
    position: fixed;
    right: 1rem;
    top: 1rem;
    z-index: 1001;
    background: #2563eb !important;
    color: white !important;
    padding: 0.5rem 1rem !important;
    border-radius: 0.5rem !important;
    font-size: 0.875rem !important;
    font-weight: 500 !important;
}

.input-area {
    border-top: 1px solid #e2e8f0;
    padding: 1rem;
    background: white;
    border-radius: 0 0 0.75rem 0.75rem;
}

.textbox {
    border: 1px solid #e2e8f0 !important;
    border-radius: 0.5rem !important;
    padding: 0.75rem !important;
    font-size: 1rem !important;
    box-shadow: 0 1px 2px 0 rgb(0 0 0 / 0.05) !important;
}

.textbox:focus {
    border-color: #2563eb !important;
    outline: none !important;
    box-shadow: 0 0 0 2px rgba(37, 99, 235, 0.2) !important;
}

.submit-button {
    background: #2563eb !important;
    color: white !important;
    padding: 0.5rem 1rem !important;
    border-radius: 0.5rem !important;
    font-size: 0.875rem !important;
    font-weight: 500 !important;
    transition: all 0.2s !important;
}

.submit-button:hover {
    background: #1d4ed8 !important;
}
"""

DESCRIPTION = '''
<div class="header">
    <h1>Lexora-Lite-3B Chat</h1>
    <p>An advanced Italian language model ready to assist you</p>
</div>
'''

# Generate function remains the same
@spaces.GPU(duration=90)
def generate(
    message: str,
    chat_history: list[tuple[str, str]],
    system_message: str = "",
    max_new_tokens: int = 2048,
    temperature: float = 0.0001,
    top_p: float = 1.0,
    top_k: int = 50,
    repetition_penalty: float = 1.0,
) -> Iterator[str]:
    conversation = [{"role": "system", "content": system_message}]
    for user, assistant in chat_history:
        conversation.extend(
            [
                {"role": "user", "content": user},
                {"role": "assistant", "content": assistant},
            ]
        )
    conversation.append({"role": "user", "content": message})

    input_ids = tokenizer.apply_chat_template(conversation, add_generation_prompt=True, return_tensors="pt")
    if input_ids.shape[1] > MAX_INPUT_TOKEN_LENGTH:
        input_ids = input_ids[:, -MAX_INPUT_TOKEN_LENGTH:]
        gr.Warning(f"Trimmed input from conversation as it was longer than {MAX_INPUT_TOKEN_LENGTH} tokens.")
    input_ids = input_ids.to(model.device)

    streamer = TextIteratorStreamer(tokenizer, timeout=20.0, skip_prompt=True, skip_special_tokens=True)
    generate_kwargs = dict(
        {"input_ids": input_ids},
        streamer=streamer,
        max_new_tokens=max_new_tokens,
        do_sample=True,
        top_p=top_p,
        top_k=top_k,
        temperature=temperature,
        num_beams=1,
        repetition_penalty=repetition_penalty,
    )
    t = Thread(target=model.generate, kwargs=generate_kwargs)
    t.start()

    outputs = []
    for text in streamer:
        outputs.append(text)
        yield "".join(outputs)

def create_chat_interface():
    theme = gr.themes.Soft(
        primary_hue="blue",
        secondary_hue="slate",
        neutral_hue="slate",
        font=gr.themes.GoogleFont("Inter"),
        radius_size=gr.themes.sizes.radius_sm,
    )

    with gr.Blocks(css=CUSTOM_CSS, theme=theme) as demo:
        gr.Markdown(DESCRIPTION)

        with gr.Row():
            # Main chat column
            with gr.Column(scale=3):
                chat = gr.ChatInterface(
                    fn=generate,
                    additional_inputs=[
                        gr.Textbox(
                            value="",
                            label="System Message",
                            visible=False,
                        ),
                        gr.Slider(
                            label="Temperature",
                            minimum=0,
                            maximum=1.0,
                            step=0.1,
                            value=0.0001,
                            visible=False,
                        ),
                        gr.Slider(
                            label="Top-p",
                            minimum=0.05,
                            maximum=1.0,
                            step=0.05,
                            value=1.0,
                            visible=False,
                        ),
                        gr.Slider(
                            label="Top-k",
                            minimum=1,
                            maximum=1000,
                            step=1,
                            value=50,
                            visible=False,
                        ),
                        gr.Slider(
                            label="Repetition Penalty",
                            minimum=1.0,
                            maximum=2.0,
                            step=0.05,
                            value=1.0,
                            visible=False,
                        ),
                    ],
                    examples=[
                        ["Ciao! Come stai?"],
                        ["Raccontami una breve storia."],
                        ["Qual è il tuo piatto italiano preferito?"],
                    ],
                    cache_examples=False,
                )
            
            # Advanced settings panel
            with gr.Column(scale=1, visible=False) as settings_panel:
                gr.Markdown("### Advanced Settings")
                gr.Slider(
                    label="Temperature",
                    minimum=0,
                    maximum=1.0,
                    step=0.1,
                    value=0.0001,
                )
                gr.Slider(
                    label="Top-p",
                    minimum=0.05,
                    maximum=1.0,
                    step=0.05,
                    value=1.0,
                )
                gr.Slider(
                    label="Top-k",
                    minimum=1,
                    maximum=1000,
                    step=1,
                    value=50,
                )
                gr.Slider(
                    label="Repetition Penalty",
                    minimum=1.0,
                    maximum=2.0,
                    step=0.05,
                    value=1.0,
                )

if __name__ == "__main__":
    demo = create_chat_interface()
    demo.queue(max_size=20).launch()