Spaces:
Sleeping
Sleeping
File size: 5,180 Bytes
da784c8 efe44f0 da784c8 efe44f0 18f610c da784c8 efe44f0 46da343 efe44f0 1ac23c7 cba619e ced5932 cba619e ced5932 4d7115d 1ac23c7 4d7115d 1ac23c7 4d7115d 1ac23c7 4d7115d 9a64687 4d7115d c1e9709 4d7115d 9a64687 f24ac48 cba619e ced5932 cba619e efe44f0 c1e9709 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 |
import os
from threading import Thread
from typing import Iterator
import gradio as gr
import spaces
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
import subprocess
subprocess.run(
"pip install flash-attn --no-build-isolation",
env={"FLASH_ATTENTION_SKIP_CUDA_BUILD": "TRUE"},
shell=True,
)
DESCRIPTION = """\
# Lexora 7B ITA ๐ฌ ๐ฎ๐น
"""
# Updated CSS to ensure full height and proper scrolling
CUSTOM_CSS = """
.gradio-container {
height: 100vh !important;
max-height: 100vh !important;
padding: 0 !important;
background-color: #0f1117;
}
.contain {
height: 100vh !important;
max-height: 100vh !important;
display: flex;
flex-direction: column;
}
.main-container {
flex-grow: 1;
height: calc(100vh - 100px) !important;
overflow: hidden !important;
}
.chat-container {
height: 100% !important;
overflow: hidden !important;
display: flex;
flex-direction: column;
}
.chat-messages {
flex-grow: 1;
overflow-y: auto !important;
padding: 1rem;
}
.message-wrap {
height: auto !important;
max-height: none !important;
}
.message {
padding: 1rem !important;
margin: 0.5rem 0 !important;
border-radius: 0.5rem !important;
}
.user-message {
background-color: #2b2d31 !important;
}
.bot-message {
background-color: #1e1f23 !important;
}
.examples-container {
margin-top: auto;
}
"""
MAX_MAX_NEW_TOKENS = 2048
DEFAULT_MAX_NEW_TOKENS = 1024
MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "4096"))
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
model_id = "DeepMount00/Lexora-Medium-7B"
tokenizer = AutoTokenizer.from_pretrained(model_id, trust_remote_code=True,)
model = AutoModelForCausalLM.from_pretrained(
model_id,
device_map="auto",
torch_dtype=torch.bfloat16,
attn_implementation="flash_attention_2",
trust_remote_code=True,
)
model.config.sliding_window = 4096
model.eval()
@spaces.GPU(duration=90)
def generate(
message: str,
chat_history: list[tuple[str, str]],
system_message: str = "",
max_new_tokens: int = 1024,
temperature: float = 0.001,
top_p: float = 1.0,
top_k: int = 50,
repetition_penalty: float = 1.0,
) -> Iterator[str]:
conversation = [{"role": "system", "content": system_message}]
for user, assistant in chat_history:
conversation.extend(
[
{"role": "user", "content": user},
{"role": "assistant", "content": assistant},
]
)
conversation.append({"role": "user", "content": message})
input_ids = tokenizer.apply_chat_template(conversation, add_generation_prompt=True, return_tensors="pt")
if input_ids.shape[1] > MAX_INPUT_TOKEN_LENGTH:
input_ids = input_ids[:, -MAX_INPUT_TOKEN_LENGTH:]
gr.Warning(f"Trimmed input from conversation as it was longer than {MAX_INPUT_TOKEN_LENGTH} tokens.")
input_ids = input_ids.to(model.device)
streamer = TextIteratorStreamer(tokenizer, timeout=20.0, skip_prompt=True, skip_special_tokens=True)
generate_kwargs = dict(
{"input_ids": input_ids},
streamer=streamer,
max_new_tokens=max_new_tokens,
do_sample=True,
top_p=top_p,
top_k=top_k,
temperature=temperature,
num_beams=1,
repetition_penalty=repetition_penalty,
)
t = Thread(target=model.generate, kwargs=generate_kwargs)
t.start()
outputs = []
for text in streamer:
outputs.append(text)
yield "".join(outputs)
chat_interface = gr.ChatInterface(
fn=generate,
additional_inputs=[
gr.Textbox(
value="",
label="System message",
render=False,
),
gr.Slider(
label="Max new tokens",
minimum=1,
maximum=MAX_MAX_NEW_TOKENS,
step=1,
value=DEFAULT_MAX_NEW_TOKENS,
),
gr.Slider(
label="Temperature",
minimum=0,
maximum=4.0,
step=0.1,
value=0.001,
),
gr.Slider(
label="Top-p (nucleus sampling)",
minimum=0.05,
maximum=1.0,
step=0.05,
value=1.0,
),
gr.Slider(
label="Top-k",
minimum=1,
maximum=1000,
step=1,
value=50,
),
gr.Slider(
label="Repetition penalty",
minimum=1.0,
maximum=2.0,
step=0.05,
value=1.0,
),
],
stop_btn=None,
examples=[
["Ciao! Come stai?"],
],
cache_examples=False,
)
with gr.Blocks(css=CUSTOM_CSS, fill_height=True, theme=gr.themes.Base()) as demo:
with gr.Column(elem_classes="contain"):
gr.Markdown(DESCRIPTION)
gr.DuplicateButton(value="Duplicate Space for private use", elem_id="duplicate-button")
with gr.Column(elem_classes="main-container"):
chat_interface.render()
if __name__ == "__main__":
demo.queue(max_size=20).launch() |