File size: 5,180 Bytes
da784c8
efe44f0
da784c8
 
efe44f0
18f610c
da784c8
 
 
efe44f0
46da343
 
 
 
 
efe44f0
1ac23c7
 
 
 
 
cba619e
ced5932
cba619e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ced5932
 
4d7115d
 
 
 
 
 
1ac23c7
 
4d7115d
 
 
 
 
 
 
1ac23c7
4d7115d
 
1ac23c7
4d7115d
 
 
 
 
9a64687
 
4d7115d
 
 
 
 
 
 
 
 
 
 
c1e9709
4d7115d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9a64687
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f24ac48
cba619e
ced5932
 
 
cba619e
 
efe44f0
 
c1e9709
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
import os
from threading import Thread
from typing import Iterator

import gradio as gr
import spaces
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
import subprocess

subprocess.run(
    "pip install flash-attn --no-build-isolation",
    env={"FLASH_ATTENTION_SKIP_CUDA_BUILD": "TRUE"},
    shell=True,
)


DESCRIPTION = """\
# Lexora 7B ITA ๐Ÿ’ฌ ๐Ÿ‡ฎ๐Ÿ‡น
"""

# Updated CSS to ensure full height and proper scrolling
CUSTOM_CSS = """
.gradio-container {
    height: 100vh !important;
    max-height: 100vh !important;
    padding: 0 !important;
    background-color: #0f1117;
}

.contain {
    height: 100vh !important;
    max-height: 100vh !important;
    display: flex;
    flex-direction: column;
}

.main-container {
    flex-grow: 1;
    height: calc(100vh - 100px) !important;
    overflow: hidden !important;
}

.chat-container {
    height: 100% !important;
    overflow: hidden !important;
    display: flex;
    flex-direction: column;
}

.chat-messages {
    flex-grow: 1;
    overflow-y: auto !important;
    padding: 1rem;
}

.message-wrap {
    height: auto !important;
    max-height: none !important;
}

.message {
    padding: 1rem !important;
    margin: 0.5rem 0 !important;
    border-radius: 0.5rem !important;
}

.user-message {
    background-color: #2b2d31 !important;
}

.bot-message {
    background-color: #1e1f23 !important;
}

.examples-container {
    margin-top: auto;
}
"""

MAX_MAX_NEW_TOKENS = 2048
DEFAULT_MAX_NEW_TOKENS = 1024
MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "4096"))

device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")

model_id = "DeepMount00/Lexora-Medium-7B"
tokenizer = AutoTokenizer.from_pretrained(model_id, trust_remote_code=True,)
model = AutoModelForCausalLM.from_pretrained(
    model_id,
    device_map="auto",
    torch_dtype=torch.bfloat16,
    attn_implementation="flash_attention_2",
    trust_remote_code=True,
)
model.config.sliding_window = 4096
model.eval()


@spaces.GPU(duration=90)
def generate(
    message: str,
    chat_history: list[tuple[str, str]],
    system_message: str = "",
    max_new_tokens: int = 1024,
    temperature: float = 0.001,
    top_p: float = 1.0,
    top_k: int = 50,
    repetition_penalty: float = 1.0,
) -> Iterator[str]:
    conversation = [{"role": "system", "content": system_message}]
    for user, assistant in chat_history:
        conversation.extend(
            [
                {"role": "user", "content": user},
                {"role": "assistant", "content": assistant},
            ]
        )
    conversation.append({"role": "user", "content": message})

    input_ids = tokenizer.apply_chat_template(conversation, add_generation_prompt=True, return_tensors="pt")
    if input_ids.shape[1] > MAX_INPUT_TOKEN_LENGTH:
        input_ids = input_ids[:, -MAX_INPUT_TOKEN_LENGTH:]
        gr.Warning(f"Trimmed input from conversation as it was longer than {MAX_INPUT_TOKEN_LENGTH} tokens.")
    input_ids = input_ids.to(model.device)

    streamer = TextIteratorStreamer(tokenizer, timeout=20.0, skip_prompt=True, skip_special_tokens=True)
    generate_kwargs = dict(
        {"input_ids": input_ids},
        streamer=streamer,
        max_new_tokens=max_new_tokens,
        do_sample=True,
        top_p=top_p,
        top_k=top_k,
        temperature=temperature,
        num_beams=1,
        repetition_penalty=repetition_penalty,
    )
    t = Thread(target=model.generate, kwargs=generate_kwargs)
    t.start()

    outputs = []
    for text in streamer:
        outputs.append(text)
        yield "".join(outputs)


chat_interface = gr.ChatInterface(
    fn=generate,
    additional_inputs=[
        gr.Textbox(
            value="",
            label="System message",
            render=False,
        ),        
        gr.Slider(
            label="Max new tokens",
            minimum=1,
            maximum=MAX_MAX_NEW_TOKENS,
            step=1,
            value=DEFAULT_MAX_NEW_TOKENS,
        ),
        gr.Slider(
            label="Temperature",
            minimum=0,
            maximum=4.0,
            step=0.1,
            value=0.001,
        ),
        gr.Slider(
            label="Top-p (nucleus sampling)",
            minimum=0.05,
            maximum=1.0,
            step=0.05,
            value=1.0,
        ),
        gr.Slider(
            label="Top-k",
            minimum=1,
            maximum=1000,
            step=1,
            value=50,
        ),
        gr.Slider(
            label="Repetition penalty",
            minimum=1.0,
            maximum=2.0,
            step=0.05,
            value=1.0,
        ),
    ],
    stop_btn=None,
    examples=[
        ["Ciao! Come stai?"],
    ],
    cache_examples=False,
)

with gr.Blocks(css=CUSTOM_CSS, fill_height=True, theme=gr.themes.Base()) as demo:
    with gr.Column(elem_classes="contain"):
        gr.Markdown(DESCRIPTION)
        gr.DuplicateButton(value="Duplicate Space for private use", elem_id="duplicate-button")
        with gr.Column(elem_classes="main-container"):
            chat_interface.render()

if __name__ == "__main__":
    demo.queue(max_size=20).launch()