Mamba-Trainer / train_mamba.py
Pratik Dwivedi
trainer commit (#1)
56d31bf
import torch
import argparse
from mamba_ssm.models.mixer_seq_simple import MambaLMHeadModel
from transformers import AutoTokenizer, TrainingArguments
from trainer.data import ChatDataModule
from trainer.mamba_trainer import MambaTrainer
def run(args):
print("Loading Mamba {} model".format(args.model))
model = MambaLMHeadModel.from_pretrained(args.model, dtype=torch.bfloat16, device="cuda")
print("Loading tokenizer {}".format(args.tokenizer))
tokenizer = AutoTokenizer.from_pretrained(args.tokenizer)
tokenizer.eos_token = "<|endoftext|>"
tokenizer.pad_token = tokenizer.eos_token
tokenizer.chat_template = AutoTokenizer.from_pretrained("HuggingFaceH4/zephyr-7b-beta").chat_template
print("Loading data from {}".format(args.data_path))
data_module = ChatDataModule(
tokenizer=tokenizer,
data_path=args.data_path,
conversation_template=tokenizer.chat_template,
max_tokens=2048
)
print("Initializing trainer...")
trainer = MambaTrainer(
model=model,
train_dataset=data_module.dataset,
tokenizer=tokenizer,
args=TrainingArguments(
learning_rate=args.learning_rate,
num_train_epochs=args.num_epochs,
per_device_train_batch_size=args.batch_size,
gradient_accumulation_steps=args.gradient_accumulation_steps,
optim=args.optim,
output_dir="mamba-chat",
logging_steps=50,
save_steps=500,
),
data_collator=data_module.data_collator,
)
print("Training started...")
trainer.train()
print("Training finished!")
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--model", type=str, default="state-spaces/mamba-130m")
parser.add_argument("--tokenizer", type=str, default="EleutherAI/gpt-neox-20b")
parser.add_argument("--learning_rate", type=float, default=5e-5)
parser.add_argument("--batch_size", type=int, default=4)
parser.add_argument("--gradient_accumulation_steps", type=int, default=1)
parser.add_argument("--optim", type=str, default="adamw_torch")
parser.add_argument("--data_path", type=str, default="./data/ultrachat_small.jsonl")
parser.add_argument("--num_epochs", type=int, default=1)
args = parser.parse_args()
run(args)