File size: 5,071 Bytes
1cc07e3
 
 
 
 
 
 
 
f71f3ee
464c4cb
1cc07e3
 
 
 
 
7230323
1cc07e3
399b3a7
ca413dd
bd57dbf
db6b197
 
 
 
 
 
 
 
 
451bab1
89ed426
db6b197
464c4cb
db6b197
 
7f32613
1cc07e3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ca413dd
 
 
 
 
1cc07e3
7bc4a8c
f71f3ee
1cc07e3
f71f3ee
ca413dd
 
 
 
db6b197
 
ca413dd
 
f71f3ee
ca413dd
7230323
550e253
 
1cc07e3
 
e73d4c4
1cc07e3
 
af8a075
1cc07e3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
70b74ac
 
1cc07e3
70b74ac
 
1cc07e3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
import os
import whisper
from io import BytesIO #   BytesIO is a class in the io module that implements an in-memory file-like object.
import base64 
import boto3 # AWS Polly
from pydub import AudioSegment #    AudioSegment is a class in the pydub module that can be used to manipulate audio files.
from pydub.playback import play  #  play is a function in the pydub.playback module that can be used to play audio files.
import logging
import numpy as np
import openai
from langchain import OpenAI
from langchain.chains import RetrievalQA #  RetrievalQA is a class in the langchain.chains module that can be used to build a retrieval-based question answering system.
from langchain.vectorstores import Chroma # Chroma is a class in the langchain.vectorstores module that can be used to store vectors.
from langchain.document_loaders import DirectoryLoader #       
from langchain.embeddings.openai import OpenAIEmbeddings # OpenAIGPTEmbeddings
from langchain.embeddings import HuggingFaceEmbeddings
from langchain.text_splitter import CharacterTextSplitter #     CharacterTextSplitter is a class in the langchain.text_splitter module that can be used to split text into chunks.
#import streamlit as st
from langchain.indexes import VectorstoreIndexCreator #导入向量存储索引创建器
#from langchain.vectorstores import DocArrayInMemorySearch #向量存储
from tenacity import (
    retry,
    stop_after_attempt,
    wait_random_exponential,
)

# FUNCTIONS

# get embeddings
@retry(wait=wait_random_exponential(min=21, max=60), stop=stop_after_attempt(100))
#@st.cache_data
def embedding_from_string(input: str, model: str) -> list:
    response = openai.Embedding.create(input=input, model=model)
    embedding = response["data"][0]["embedding"]
    return embedding

OPENAI_API_KEY = os.getenv('OPENAI_API_KEY')
AWS_ACCESS_KEY_ID = os.getenv('AWS_ACCESS_KEY_ID')
AWS_SECRET_ACCESS_KEY = os.getenv('AWS_SECRET_ACCESS_KEY')
AWS_REGION_NAME = 'ap-south-1'


logging.basicConfig(level="INFO",
                    filename='conversations.log',
                    filemode='a',
                    format='%(asctime)s %(message)s',
                    datefmt='%H:%M:%S')


def buzz_user():
    input_prompt = AudioSegment.from_mp3('assets/timeout_audio.mp3')
    play(input_prompt)
    

def initialize_knowledge_base():
    
    loader = DirectoryLoader('profiles', glob='**/*.txt') #文件夹加载器 profiles文件夹下的所有txt文件
    docs = loader.load()
    
    #index = VectorstoreIndexCreator(
     #   vectorstore_cls=DocArrayInMemorySearch
    #).from_loaders([loader])


    char_text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=0) #文本分割器 chunk_size=1000, chunk_overlap=0
    doc_texts = char_text_splitter.split_documents(docs) #文档分割器,作用是将文档分割成小块

    # Embed each chunk of text
   #embeddings = []
    #openAI_embeddings = OpenAIEmbeddings()
    #for doc in doc_texts:
    #    text = str(doc)
        #embedding = openAI_embeddings.embed_documents(text)
        #embeddings.append(embedding)
    #    embedding = embedding_from_string(text, "text-embedding-ada-002")
    #    embeddings.append(embedding)
    
    #vStore = np.concatenate(embeddings, axis=0)
    embedding = HuggingFaceEmbeddings(model_name='shibing624/text2vec-base-chinese')
    #openAI_embeddings = OpenAIEmbeddings()
    vStore = Chroma.from_documents(doc_texts, embedding) #Chroma是一个类,用于存储向量,from_documents是一个方法,用于从文档中创建向量存储器,openAI_embeddings是一个类,用于将文本转换为向量

    conv_model = RetrievalQA.from_chain_type(
        llm=OpenAI(model_name="gpt-3.5-turbo-16k"), 
        chain_type="stuff", 
        retriever=vStore.as_retriever(
            search_kwargs={"k": 1}
            )
        )
    voice_model = whisper.load_model("tiny") #加载模型  tiny模型    tiny模型是一个小型的语音识别模型,它的大小只有 50MB 左右,但是它的准确率却非常高,可以达到 95% 以上。

    return conv_model, voice_model


def text_to_speech_gen(answer):  #文字转语音

    polly = boto3.client('polly',
                aws_access_key_id=AWS_ACCESS_KEY_ID,
                aws_secret_access_key=AWS_SECRET_ACCESS_KEY,
                region_name=AWS_REGION_NAME)

    response = polly.synthesize_speech(
        Text=answer, 
        #VoiceId='Matthew', 
        VoiceId='Zhiyu',
        OutputFormat='mp3', 
        #Engine = "neural"
        Engine = "standard")
    
    audio_stream = response['AudioStream'].read()
    audio_html = audio_to_html(audio_stream)

    return audio_html
    

def audio_to_html(audio_bytes):       #音频转html
    audio_io = BytesIO(audio_bytes)
    audio_io.seek(0)
    audio_base64 = base64.b64encode(audio_io.read()).decode("utf-8")
    audio_html = f'<audio src="data:audio/mpeg;base64,{audio_base64}" controls autoplay></audio>'

    return audio_html


def get_chat_history(user_message, history):
    return "", history + [[user_message, None]]