File size: 4,000 Bytes
814aee6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
"""
E2E tests for lora llama
"""

import logging
import os
import unittest
from pathlib import Path

from axolotl.cli import load_datasets
from axolotl.common.cli import TrainerCliArgs
from axolotl.train import train
from axolotl.utils.config import normalize_config
from axolotl.utils.dict import DictDefault

from ..utils import with_temp_dir

LOG = logging.getLogger("axolotl.tests.e2e")
os.environ["WANDB_DISABLED"] = "true"


class TestPhiMultipack(unittest.TestCase):
    """
    Test case for Phi2 models
    """

    @with_temp_dir
    def test_ft_packed(self, temp_dir):
        # pylint: disable=duplicate-code
        cfg = DictDefault(
            {
                "base_model": "microsoft/phi-1_5",
                "model_type": "PhiForCausalLM",
                "tokenizer_type": "AutoTokenizer",
                "sequence_len": 1024,
                "sample_packing": True,
                "flash_attention": True,
                "pad_to_sequence_len": True,
                "load_in_8bit": False,
                "adapter": None,
                "val_set_size": 0.1,
                "special_tokens": {
                    "pad_token": "<|endoftext|>",
                },
                "datasets": [
                    {
                        "path": "mhenrichsen/alpaca_2k_test",
                        "type": "alpaca",
                    },
                ],
                "dataset_shard_num": 10,
                "dataset_shard_idx": 0,
                "num_epochs": 1,
                "micro_batch_size": 1,
                "gradient_accumulation_steps": 1,
                "output_dir": temp_dir,
                "learning_rate": 0.00001,
                "optimizer": "adamw_bnb_8bit",
                "lr_scheduler": "cosine",
                "max_steps": 20,
                "eval_steps": 10,
                "save_steps": 10,
                "bf16": "auto",
            }
        )

        normalize_config(cfg)
        cli_args = TrainerCliArgs()
        dataset_meta = load_datasets(cfg=cfg, cli_args=cli_args)

        train(cfg=cfg, cli_args=cli_args, dataset_meta=dataset_meta)
        assert (Path(temp_dir) / "pytorch_model.bin").exists()

    @with_temp_dir
    def test_qlora_packed(self, temp_dir):
        # pylint: disable=duplicate-code
        cfg = DictDefault(
            {
                "base_model": "microsoft/phi-1_5",
                "model_type": "PhiForCausalLM",
                "tokenizer_type": "AutoTokenizer",
                "sequence_len": 1024,
                "sample_packing": True,
                "flash_attention": True,
                "pad_to_sequence_len": True,
                "load_in_8bit": False,
                "adapter": "qlora",
                "lora_r": 64,
                "lora_alpha": 32,
                "lora_dropout": 0.05,
                "lora_target_linear": True,
                "val_set_size": 0.1,
                "special_tokens": {
                    "pad_token": "<|endoftext|>",
                },
                "datasets": [
                    {
                        "path": "mhenrichsen/alpaca_2k_test",
                        "type": "alpaca",
                    },
                ],
                "dataset_shard_num": 10,
                "dataset_shard_idx": 0,
                "num_epochs": 1,
                "micro_batch_size": 1,
                "gradient_accumulation_steps": 1,
                "output_dir": temp_dir,
                "learning_rate": 0.00001,
                "optimizer": "adamw_bnb_8bit",
                "lr_scheduler": "cosine",
                "max_steps": 20,
                "eval_steps": 10,
                "save_steps": 10,
                "bf16": "auto",
            }
        )

        normalize_config(cfg)
        cli_args = TrainerCliArgs()
        dataset_meta = load_datasets(cfg=cfg, cli_args=cli_args)

        train(cfg=cfg, cli_args=cli_args, dataset_meta=dataset_meta)
        assert (Path(temp_dir) / "adapter_model.bin").exists()