File size: 30,759 Bytes
5062eca 7657632 e303d64 0d6708b 4f4d638 7657632 0d6708b 7657632 b8e5603 7657632 5b67ea9 7657632 1210dc8 7657632 2bc1a5b 5b67ea9 2bc1a5b 37293dc 2bc1a5b 1a82082 0d6708b e303d64 7657632 e30f1e3 7657632 09f1543 7657632 6c81c61 e303d64 7657632 e303d64 2bc1a5b 2844eb2 1210dc8 1a82082 1210dc8 1a82082 1210dc8 1a82082 1210dc8 1a82082 ab5cd28 1210dc8 1a82082 1210dc8 e303d64 7b55fe6 e303d64 7b55fe6 e303d64 7b55fe6 e303d64 7657632 58ec8b1 7657632 e30f1e3 09f1543 7657632 09f1543 7657632 42f9642 7657632 42f9642 7657632 42f9642 7657632 42f9642 7657632 42f9642 7657632 42f9642 7657632 e30f1e3 7657632 5b67ea9 5a5d474 5b67ea9 5a5d474 5b67ea9 bf08044 5b67ea9 c6d870b 5b67ea9 c6d870b 5b67ea9 490923f 4f4d638 490923f b8e5603 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 |
"""Callbacks for Trainer class"""
from __future__ import annotations
import logging
import os
from shutil import copyfile
from tempfile import NamedTemporaryFile
from typing import TYPE_CHECKING, Dict, List
import evaluate
import mlflow
import numpy as np
import pandas as pd
import torch
import torch.distributed as dist
import wandb
from datasets import load_dataset
from optimum.bettertransformer import BetterTransformer
from tqdm import tqdm
from transformers import (
GenerationConfig,
Trainer,
TrainerCallback,
TrainerControl,
TrainerState,
TrainingArguments,
)
from transformers.trainer_utils import PREFIX_CHECKPOINT_DIR, IntervalStrategy
from axolotl.utils.bench import log_gpu_memory_usage
from axolotl.utils.distributed import (
barrier,
broadcast_dict,
gather_scalar_from_all_ranks,
get_world_size,
is_distributed,
is_main_process,
zero_first,
)
if TYPE_CHECKING:
from axolotl.core.trainer_builder import AxolotlTrainingArguments
LOG = logging.getLogger("axolotl.callbacks")
IGNORE_INDEX = -100
class EvalFirstStepCallback(
TrainerCallback
): # pylint: disable=too-few-public-methods disable=unused-argument
"""
Callback to trigger evals on the first step
"""
def on_step_end(
self,
args: TrainingArguments,
state: TrainerState,
control: TrainerControl,
**kwargs,
):
if (
args.evaluation_strategy == IntervalStrategy.STEPS
and state.global_step == 1
):
control.should_evaluate = True
return control
class SaveBetterTransformerModelCallback(
TrainerCallback
): # pylint: disable=too-few-public-methods
"""Callback to save the BetterTransformer wrapped model"""
def on_step_end(
self,
args: TrainingArguments,
state: TrainerState,
control: TrainerControl,
**kwargs,
):
# Save
if (
args.save_strategy == IntervalStrategy.STEPS
and args.save_steps > 0
and state.global_step % args.save_steps == 0
):
control.should_save = True
if control.should_save:
checkpoint_folder = os.path.join(
args.output_dir,
f"{PREFIX_CHECKPOINT_DIR}-{state.global_step}",
)
model = BetterTransformer.reverse(kwargs["model"])
model.save_pretrained(checkpoint_folder)
# FIXME - need to cleanup old checkpoints
# since we're saving here, we don't need the trainer loop to attempt to save too b/c
# the trainer will raise an exception since it can't save a BetterTransformer wrapped model
control.should_save = False
return control
class GPUStatsCallback(
TrainerCallback
): # pylint: disable=too-few-public-methods disable=unused-argument
"""Callback to track GPU utilization"""
def __init__(self, cfg):
self.cfg = cfg
self.logged = False
def on_step_end(
self,
args: TrainingArguments,
state: TrainerState,
control: TrainerControl,
**kwargs,
):
if not self.logged and state.global_step > 1:
log_gpu_memory_usage(LOG, "while training", self.cfg.device)
self.logged = True
return control
class LossWatchDogCallback(TrainerCallback):
"""Callback to track loss and stop training if loss is too high"""
def __init__(self, cfg):
self.cfg = cfg
self.logged = False
self.violations = 0
self.threshold = cfg.loss_watchdog_threshold
self.patience = cfg.loss_watchdog_patience or 3
def on_step_end(
self,
_args: TrainingArguments,
state: TrainerState,
control: TrainerControl,
**_kwargs,
):
if len(state.log_history) > 0 and "loss" in state.log_history[-1]:
if state.log_history[-1]["loss"] > self.threshold:
self.violations += 1
if self.violations >= self.patience:
LOG.warning(
"Loss is too high, stopping training (loss_watchdog_threshold)"
)
control.should_training_stop = True
else:
self.violations = 0
return control
def bench_eval_callback_factory(trainer, tokenizer):
accuracy = evaluate.load("accuracy")
abcd_idx = [
tokenizer("A", add_special_tokens=False).input_ids[0],
tokenizer("B", add_special_tokens=False).input_ids[0],
tokenizer("C", add_special_tokens=False).input_ids[0],
tokenizer("D", add_special_tokens=False).input_ids[0],
tokenizer("E", add_special_tokens=False).input_ids[0],
tokenizer("F", add_special_tokens=False).input_ids[0],
tokenizer("G", add_special_tokens=False).input_ids[0],
]
bench_split = "eval"
def transform_bench_subject(example):
# Split on ':' and trim whitespace
parts = example["subject"].split(":")
first_part = (
parts[0].strip().lower().replace("-", "_")
) # Lowercase the first part
second_part = (
parts[1].strip().replace("-", "_") if len(parts) > 1 else "all"
) # Replace hyphens with underscores
# Return the transformed values
return {"name": first_part, "subject": second_part}
if trainer.args.bench_dataset == "mmlu-zs":
bench_dataset = load_dataset(
"openaccess-ai-collective/mmlu-evals",
data_files={
"eval": "zero_shot_mmlu_val.json",
"test": "zero_shot_mmlu_test.json",
},
)
# bench_dataset = bench_dataset.remove_columns("subject")
# MMLU Five-shot (Eval/Test only)
elif trainer.args.bench_dataset in ["mmlu", "mmlu-fs"]:
bench_dataset = load_dataset(
"openaccess-ai-collective/mmlu-evals",
data_files={
"eval": "five_shot_mmlu_val.json",
"test": "five_shot_mmlu_test.json",
},
)
# bench_dataset = bench_dataset.remove_columns('subject')
elif "/" in trainer.args.bench_dataset:
bench_ds = trainer.args.bench_dataset
bench_ds_name = "/".join(bench_ds.split("/", 2)[:2])
bench_ds_data_file = "/".join(bench_ds.split("/", 2)[2:])
bench_dataset = load_dataset(
bench_ds_name,
data_files={
"eval": bench_ds_data_file,
},
)
bench_dataset["eval"] = bench_dataset["eval"].map(transform_bench_subject)
else:
raise ValueError(
f"unhandled value `{trainer.args.bench_dataset}` for bench_dataset training args"
)
bench_dataset = bench_dataset[trainer.args.bench_split]
if trainer.args.max_bench_samples is not None:
bench_dataset = bench_dataset.select(range(trainer.args.max_bench_samples))
def tokenize_evals(example):
source = f"{tokenizer.bos_token}{example['input']}"
target = f"{example['output']}{tokenizer.eos_token}"
tokenized_source = tokenizer(
source,
max_length=2048,
truncation=True,
add_special_tokens=False,
)
tokenized_target = tokenizer(
target,
max_length=2048,
truncation=True,
add_special_tokens=False,
)
input_ids = tokenized_source["input_ids"] + tokenized_target["input_ids"]
labels = [IGNORE_INDEX] * len(tokenized_source["input_ids"]) + tokenized_target[
"input_ids"
]
return {
"input_ids": input_ids,
"labels": labels,
"subject": example["subject"],
}
with zero_first(is_main_process()):
bench_dataset = bench_dataset.map(tokenize_evals)
bench_dataset = bench_dataset.filter(lambda x: x["labels"][-2] in abcd_idx)
class BenchEvalCallback(TrainerCallback):
"""
TrainerCallback that runs the MMLU evals
"""
def on_evaluate(
self,
args: AxolotlTrainingArguments,
state: TrainerState, # pylint: disable=unused-argument
control: TrainerControl, # pylint: disable=unused-argument
metrics: Dict[str, float], # pylint: disable=unused-argument
**kwargs, # pylint: disable=unused-argument
):
data_loader = trainer.get_bench_dataloader(
bench_dataset.remove_columns(["input", "subject", "output", "name"])
)
trainer.model.eval()
preds, refs = [], []
loss_bench = 0
for batch in tqdm(data_loader, total=len(data_loader)):
(loss, logits, labels) = trainer.prediction_step(
trainer.model,
batch,
prediction_loss_only=False,
)
# There are two tokens, the output, and eos token.
for i, logit in enumerate(logits):
label_non_zero_id = (batch["labels"][i] != IGNORE_INDEX).nonzero()[
0
][0]
logit_abcd = logit[label_non_zero_id - 1][abcd_idx]
preds.append(torch.argmax(logit_abcd).item())
labels = labels[labels != IGNORE_INDEX].view(-1, 2)[:, 0]
refs += [
abcd_idx.index(label) if label in abcd_idx else -1
for label in labels.tolist()
]
loss_bench += loss.item()
# Extract results by subject.
bench_name = bench_dataset["name"]
bench_names: dict = {s: {"refs": [], "preds": []} for s in set(bench_name)}
for s, p, r in zip(bench_name, preds, refs): # pylint: disable=invalid-name
bench_names[s]["preds"].append(p)
bench_names[s]["refs"].append(r)
barrier()
local_bench_names = bench_names
gathered_bench_names: List[Dict] = [{} for _ in range(get_world_size())]
# Gather results from all GPUs to GPU 0
loss_bench_ranks = gather_scalar_from_all_ranks(
lambda: loss_bench, get_world_size()
)
len_data_loader_ranks = gather_scalar_from_all_ranks(
lambda: len(data_loader), get_world_size()
)
results = {}
if is_distributed() and not is_main_process():
dist.gather_object(local_bench_names, dst=0)
else:
if is_distributed():
dist.gather_object(local_bench_names, gathered_bench_names, dst=0)
else:
gathered_bench_names = [local_bench_names]
bench_loss = sum(loss_bench_ranks) / sum(len_data_loader_ranks)
results = {f"{bench_split}_bench_loss": bench_loss}
# Combine results from all GPUs
combined_bench_names: Dict[str, Dict[str, List]] = {}
for bench_name in gathered_bench_names:
for name, data in bench_name.items():
if name not in combined_bench_names:
combined_bench_names[name] = {"refs": [], "preds": []}
combined_bench_names[name]["refs"].extend(data["refs"])
combined_bench_names[name]["preds"].extend(data["preds"])
bench_scores = []
bench_refs = []
bench_preds = []
for (
bench_name
) in combined_bench_names: # pylint: disable=consider-using-dict-items
bench_score = accuracy.compute(
references=combined_bench_names[bench_name]["refs"],
predictions=combined_bench_names[bench_name]["preds"],
)["accuracy"]
bench_refs.extend(combined_bench_names[bench_name]["refs"])
bench_preds.extend(combined_bench_names[bench_name]["preds"])
if not pd.isna(bench_score):
results[
f"{bench_split}_bench_accuracy_{bench_name}"
] = bench_score
bench_scores.append(bench_score)
else:
results[f"{bench_split}_bench_accuracy_{bench_name}"] = 0.0
bench_scores.append(0.0)
results[f"{bench_split}_bench_average_accuracy"] = np.mean(bench_scores)
results[f"{bench_split}_bench_total_accuracy"] = accuracy.compute(
references=bench_refs, predictions=bench_preds
)["accuracy"]
trainer.log(results)
results = broadcast_dict(results)
for key, val in results.items():
metrics[key] = val
return BenchEvalCallback
def causal_lm_bench_eval_callback_factory(trainer: Trainer, tokenizer):
class CausalLMBenchEvalCallback(TrainerCallback):
"""Callback to log prediction values during each evaluation"""
def __init__(self, cfg):
self.cfg = cfg
self.logged = False
self.metrics = self.__maybe_load_metrics()
def __maybe_load_metrics(self):
metrics = {}
for metric in self.cfg.eval_causal_lm_metrics:
try:
metrics[metric] = evaluate.load(metric)
except Exception as exc: # pylint: disable=broad-exception-caught
LOG.warning(f"{metric}: {exc.args}")
return metrics
def on_evaluate(
self,
args: AxolotlTrainingArguments, # pylint: disable=unused-argument
state: TrainerState,
control: TrainerControl,
train_dataloader, # pylint: disable=unused-argument
eval_dataloader,
**kwargs, # pylint: disable=unused-argument
):
trainer.model.eval()
device = torch.device(self.cfg.device)
# pylint: disable=duplicate-code
generation_config = GenerationConfig(
max_new_tokens=self.cfg.eval_max_new_tokens,
bos_token_id=tokenizer.bos_token_id,
eos_token_id=tokenizer.eos_token_id,
pad_token_id=tokenizer.pad_token_id,
do_sample=False,
use_cache=True,
return_dict_in_generate=True,
output_attentions=False,
output_hidden_states=False,
output_scores=False,
)
def find_ranges(lst):
ranges = []
start = 0
for i in range(1, len(lst)):
if lst[i] == 0:
ranges.append((start, i - 1))
start = i
end = len(lst) - 1
ranges.append((start, end))
return ranges
def compute(metric: evaluate.Metric, **kwargs):
# safely compute a metric and return the score if the format is correct
metric_score = None
try:
metric_score = metric.compute(**kwargs)
return (
metric_score["score"]
if "score" in metric_score
else metric_score["mean_score"]
)
except Exception: # pylint: disable=broad-exception-caught
LOG.debug(
f"Failed to compute metric {metric.name} with kwargs {kwargs.keys()}"
)
return metric_score
def evaluate_preds(sources, predictions, references):
scores = {}
for metric_name, metric in self.metrics.items():
score = compute(
metric,
references=references,
predictions=predictions,
sources=sources,
)
score = score or compute(
metric,
references=[[r] for r in references],
predictions=predictions,
)
scores[metric_name] = score
return scores
def predict_with_generate():
eval_src, eval_pred, eval_ref = [], [], []
for batch in tqdm(eval_dataloader):
batch_labels = batch["labels"].to(device)
batch_input_ids = batch["input_ids"].to(device)
if "position_ids" in batch:
batch_pos_ids = batch["position_ids"].tolist()
else:
batch_pos_ids = [None] * len(batch["input_ids"])
prompt_token_ids_list = []
completion_token_ids_list = []
for input_ids_all, labels_all, pos_ids in zip(
batch_input_ids,
batch_labels,
batch_pos_ids,
):
if pos_ids is None:
pos_ranges = [(0, len(input_ids_all) - 1)]
else:
pos_ranges = find_ranges(pos_ids)
for pos_range in pos_ranges:
start, end = pos_range
if start == end:
continue
input_ids = input_ids_all[start : end + 1]
labels = labels_all[start : end + 1]
tokens_without_loss = labels == IGNORE_INDEX
tokens_with_loss = labels != IGNORE_INDEX
tokens_exclude_padding = input_ids != tokenizer.pad_token_id
prompt_token_includes = (
tokens_without_loss & tokens_exclude_padding
)
prompt_token_ids = input_ids[prompt_token_includes]
prompt_token_ids_list.append(prompt_token_ids)
completion_token_ids = input_ids[tokens_with_loss]
completion_token_ids_list.append(completion_token_ids)
prompt_texts = tokenizer.batch_decode(
prompt_token_ids_list, skip_special_tokens=True
)
completion_texts = tokenizer.batch_decode(
completion_token_ids_list, skip_special_tokens=True
)
with torch.no_grad():
prompt_encoding = tokenizer(
prompt_texts, padding=True, return_tensors="pt"
).to(self.cfg.device)
predictions = trainer.model.generate(
**prompt_encoding, generation_config=generation_config
)
prediction_all_tokens = predictions["sequences"].cpu().tolist()
prediction_without_prompt_tokens_list = []
for prompt_token_ids, prediction_tokens in zip(
prompt_token_ids_list, prediction_all_tokens
):
prediction_without_prompt_tokens = prediction_tokens[
len(prompt_token_ids) :
]
prediction_without_prompt_tokens_list.append(
prediction_without_prompt_tokens
)
predicted_texts = tokenizer.batch_decode(
prediction_without_prompt_tokens_list, skip_special_tokens=True
)
eval_src.extend(prompt_texts)
eval_pred.extend(predicted_texts)
eval_ref.extend(completion_texts)
return eval_src, eval_pred, eval_ref
if is_main_process():
eval_preds = predict_with_generate()
trainer.log(evaluate_preds(*eval_preds))
return control
return CausalLMBenchEvalCallback
def log_prediction_callback_factory(trainer: Trainer, tokenizer):
class LogPredictionCallback(TrainerCallback):
"""Callback to log prediction values during each evaluation"""
def __init__(self, cfg):
self.cfg = cfg
self.logged = False
def on_evaluate(
self,
args: AxolotlTrainingArguments, # pylint: disable=unused-argument
state: TrainerState,
control: TrainerControl,
train_dataloader, # pylint: disable=unused-argument
eval_dataloader,
**kwargs, # pylint: disable=unused-argument
):
eval_table_size = self.cfg.eval_table_size
if eval_table_size <= 0:
return control
trainer.model.eval()
device = torch.device(self.cfg.device)
# pylint: disable=duplicate-code
generation_config = GenerationConfig(
max_new_tokens=self.cfg.eval_max_new_tokens,
bos_token_id=tokenizer.bos_token_id,
eos_token_id=tokenizer.eos_token_id,
pad_token_id=tokenizer.pad_token_id,
do_sample=False,
use_cache=True,
return_dict_in_generate=True,
output_attentions=False,
output_hidden_states=False,
output_scores=False,
)
def logits_to_tokens(logits) -> torch.Tensor:
probabilities = torch.softmax(logits, dim=-1)
# Get the predicted token ids (the ones with the highest probability)
predicted_token_ids = torch.argmax(probabilities, dim=-1)
return predicted_token_ids
def find_ranges(lst):
ranges = []
start = 0
for i in range(1, len(lst)):
if lst[i] == 0:
ranges.append((start, i - 1))
start = i
end = len(lst) - 1
ranges.append((start, end))
return ranges
def log_table_from_dataloader(name: str, table_dataloader):
table = wandb.Table( # type: ignore[attr-defined]
columns=[
"id",
"Prompt",
"Correct Completion",
"Predicted Completion (model.generate)",
"Predicted Completion (trainer.prediction_step)",
]
)
row_index = 0
for batch in tqdm(table_dataloader):
if row_index > eval_table_size:
break
batch_labels = batch["labels"].to(device)
batch_input_ids = batch["input_ids"].to(device)
if "position_ids" in batch:
batch_pos_ids = batch["position_ids"].tolist()
else:
batch_pos_ids = [None] * len(batch["input_ids"])
(_, batch_logits, _) = trainer.prediction_step(
trainer.model,
batch,
prediction_loss_only=False,
)
prompt_token_ids_list = []
pred_step_token_ids_list = []
completion_token_ids_list = []
for input_ids_all, labels_all, pos_ids, logits in zip(
batch_input_ids,
batch_labels,
batch_pos_ids,
batch_logits,
):
if pos_ids is None:
pos_ranges = [(0, len(input_ids_all) - 1)]
else:
pos_ranges = find_ranges(pos_ids)
for pos_range in pos_ranges:
start, end = pos_range
if start == end:
continue
input_ids = input_ids_all[start : end + 1]
labels = labels_all[start : end + 1]
tokens_without_loss = labels == IGNORE_INDEX
tokens_with_loss = labels != IGNORE_INDEX
tokens_exclude_padding = input_ids != tokenizer.pad_token_id
prompt_token_includes = (
tokens_without_loss & tokens_exclude_padding
)
prompt_token_ids = input_ids[prompt_token_includes]
prompt_token_ids_list.append(prompt_token_ids)
completion_token_ids = input_ids[tokens_with_loss]
completion_token_ids_list.append(completion_token_ids)
pred_step_token_ids = logits_to_tokens(
logits[start : end + 1]
)[tokens_with_loss]
pred_step_token_ids_list.append(pred_step_token_ids)
prompt_texts = tokenizer.batch_decode(
prompt_token_ids_list, skip_special_tokens=True
)
completion_texts = tokenizer.batch_decode(
completion_token_ids_list, skip_special_tokens=True
)
pred_step_texts = tokenizer.batch_decode(
pred_step_token_ids_list, skip_special_tokens=True
)
with torch.no_grad():
prompt_encoding = tokenizer(
prompt_texts, padding=True, return_tensors="pt"
).to(self.cfg.device)
predictions = trainer.model.generate(
**prompt_encoding, generation_config=generation_config
)
prediction_all_tokens = predictions["sequences"].cpu().tolist()
prediction_without_prompt_tokens_list = []
for prompt_token_ids, prediction_tokens in zip(
prompt_token_ids_list, prediction_all_tokens
):
prediction_without_prompt_tokens = prediction_tokens[
len(prompt_token_ids) :
]
prediction_without_prompt_tokens_list.append(
prediction_without_prompt_tokens
)
predicted_texts = tokenizer.batch_decode(
prediction_without_prompt_tokens_list, skip_special_tokens=True
)
for (
prompt_text,
completion_text,
prediction_text,
pred_step_text,
) in zip(
prompt_texts, completion_texts, predicted_texts, pred_step_texts
):
table.add_data(
row_index,
prompt_text,
completion_text,
prediction_text,
pred_step_text,
)
row_index += 1
wandb.run.log({f"{name} - Predictions vs Ground Truth": table}) # type: ignore[attr-defined]
if is_main_process():
log_table_from_dataloader("Eval", eval_dataloader)
return control
return LogPredictionCallback
class SaveAxolotlConfigtoWandBCallback(TrainerCallback):
"""Callback to save axolotl config to wandb"""
def __init__(self, axolotl_config_path):
self.axolotl_config_path = axolotl_config_path
def on_train_begin(
self,
args: AxolotlTrainingArguments, # pylint: disable=unused-argument
state: TrainerState, # pylint: disable=unused-argument
control: TrainerControl,
**kwargs, # pylint: disable=unused-argument
):
if is_main_process():
try:
# sync config to top level in run, cannot delete file right away because wandb schedules it to be synced even w/policy = 'now', so let OS delete it later.
with NamedTemporaryFile(
mode="w", delete=False, suffix=".yml", prefix="axolotl_config_"
) as temp_file:
copyfile(self.axolotl_config_path, temp_file.name)
wandb.save(temp_file.name)
LOG.info(
"The Axolotl config has been saved to the WandB run under files."
)
except (FileNotFoundError, ConnectionError) as err:
LOG.warning(f"Error while saving Axolotl config to WandB: {err}")
return control
class SaveAxolotlConfigtoMlflowCallback(TrainerCallback):
"""Callback to save axolotl config to mlflow"""
def __init__(self, axolotl_config_path):
self.axolotl_config_path = axolotl_config_path
def on_train_begin(
self,
args: AxolotlTrainingArguments, # pylint: disable=unused-argument
state: TrainerState, # pylint: disable=unused-argument
control: TrainerControl,
**kwargs, # pylint: disable=unused-argument
):
if is_main_process():
try:
with NamedTemporaryFile(
mode="w", delete=False, suffix=".yml", prefix="axolotl_config_"
) as temp_file:
copyfile(self.axolotl_config_path, temp_file.name)
mlflow.log_artifact(temp_file.name, artifact_path="")
LOG.info(
"The Axolotl config has been saved to the MLflow artifacts."
)
except (FileNotFoundError, ConnectionError) as err:
LOG.warning(f"Error while saving Axolotl config to MLflow: {err}")
return control
|