File size: 18,004 Bytes
8cec513
c2dbf2c
a5bf838
8cec513
1210dc8
71a43f8
131afdb
a5bf838
7b55fe6
44454ae
7b55fe6
553a86b
 
1210dc8
8cec513
 
 
 
 
 
 
 
 
 
 
 
 
 
f6060a6
992e742
f6060a6
8cec513
2414673
8cec513
 
 
094fc2c
 
 
 
 
 
8cec513
 
 
 
 
 
 
 
 
2642cae
 
8cec513
 
5b67ea9
 
8cec513
 
 
 
 
 
 
 
 
 
 
 
 
 
 
96deb6b
 
 
 
 
 
 
5f79b82
 
 
 
 
 
 
 
 
9ec2077
 
2d8def6
 
 
44454ae
62eaee7
44454ae
 
 
 
 
eb41f76
44454ae
 
 
19a600a
 
 
 
 
 
 
 
 
 
 
 
eb41f76
19a600a
 
 
eb41f76
 
 
 
 
 
 
 
 
 
 
 
 
1115c50
 
 
 
 
 
 
 
 
 
 
 
 
ca84cca
 
 
7b55fe6
 
8cec513
1d7da3b
131afdb
 
 
 
cfbce02
131afdb
 
 
2bb0b78
 
 
 
 
 
 
 
 
 
 
 
 
3437149
 
 
 
 
3aad5f3
 
 
 
3c71c8d
553a86b
3c71c8d
 
 
 
7ee3c4c
 
 
 
 
2642cae
 
 
 
dd00657
3355706
dd00657
1d7da3b
48f4c05
 
52dd92a
 
 
 
 
 
 
 
 
48f4c05
52dd92a
 
 
 
 
 
 
 
dd00657
15d3a65
 
 
fe0e69f
553a86b
52dd92a
15d3a65
 
 
bde3c5a
 
 
 
 
 
 
 
 
 
 
 
 
15d3a65
 
 
2824423
553a86b
52dd92a
 
a5bf838
1c33eb8
b832a0a
 
 
1c33eb8
bfd27ba
babf0fd
 
14668fa
 
 
 
 
1edc30c
 
553a86b
1edc30c
 
1a82082
553a86b
1a82082
 
1210dc8
c01015f
553a86b
1210dc8
 
 
1edc30c
eea2731
553a86b
eea2731
 
2f586d1
 
 
 
eea2731
19cf0bd
cb9d3af
 
553a86b
cb9d3af
e79c8e6
 
 
 
 
96bd6ae
 
 
 
 
 
 
2bb0b78
 
 
 
 
 
 
 
 
 
 
e30f1e3
 
 
 
 
 
 
 
 
62eaee7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e7d3e2d
 
590d603
 
e7d3e2d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5f79b82
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
383f88d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e7d3e2d
9923b72
 
 
 
 
 
 
 
 
44c9d01
 
 
 
 
 
1bc1186
 
 
fb12895
 
 
a1da39c
 
 
 
 
 
 
ef24342
 
 
 
 
 
 
 
 
 
 
 
 
 
1ffa386
 
 
 
 
 
 
 
 
 
 
 
 
 
1d7da3b
 
 
ab5cd28
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
"""Module for working with config dicts"""

import logging
import os

import torch
from transformers.utils import is_torch_bf16_gpu_available

from axolotl.utils.bench import log_gpu_memory_usage
from axolotl.utils.models import load_model_config

LOG = logging.getLogger("axolotl")


def choose_device(cfg):
    def get_device():
        try:
            if torch.cuda.is_available():
                return f"cuda:{cfg.local_rank}"

            if torch.backends.mps.is_available():
                return "mps"

            raise SystemError("No CUDA/mps device found")
        except Exception:  # pylint: disable=broad-exception-caught
            return "cpu"

    cfg.device = get_device()
    if cfg.world_size == 1:
        cfg.device_map = cfg.device_map or "auto"
    else:
        if cfg.device.startswith("cuda"):
            cfg.device_map = {"": torch.cuda.current_device()}
        else:
            cfg.device_map = {"": cfg.device}

    # in `accelerate launch`, we need to not pass through any device map and let
    # accelerate figure out which parts of the model to put on which gpu
    accelerate_vars = [var for var in os.environ if var.startswith("ACCELERATE_USE_")]
    if accelerate_vars:
        cfg.device_map = None


def normalize_config(cfg):
    # setup some derived config / hyperparams
    cfg.gradient_accumulation_steps = cfg.gradient_accumulation_steps or (
        cfg.batch_size // cfg.micro_batch_size
    )
    cfg.batch_size = (
        cfg.batch_size or cfg.micro_batch_size * cfg.gradient_accumulation_steps
    )
    if cfg.eval_batch_size is None:
        cfg.eval_batch_size = cfg.micro_batch_size
    cfg.world_size = int(os.environ.get("WORLD_SIZE", 1))
    cfg.local_rank = int(os.environ.get("LOCAL_RANK", 0))
    cfg.eval_table_size = cfg.eval_table_size or 0
    cfg.eval_table_max_new_tokens = cfg.eval_table_max_new_tokens or 128
    choose_device(cfg)
    cfg.ddp = cfg.ddp if cfg.ddp is not None else cfg.world_size != 1
    if cfg.ddp:
        cfg.device_map = {"": int(os.environ.get("LOCAL_RANK", 0))}
        cfg.batch_size = cfg.batch_size * cfg.world_size

    if cfg.device == "mps":
        cfg.load_in_8bit = False
        cfg.tf32 = False
        if cfg.bf16:
            cfg.fp16 = True
        cfg.bf16 = False
    else:
        torch.backends.cuda.matmul.allow_tf32 = cfg.tf32 or False

    if cfg.bf16 or cfg.bfloat16:
        cfg.torch_dtype = torch.bfloat16
    elif cfg.load_in_8bit or cfg.fp16 or cfg.float16:
        cfg.torch_dtype = torch.float16
    else:
        cfg.torch_dtype = torch.float32

    if cfg.saves_per_epoch:
        save_steps = 1.0 / (cfg.saves_per_epoch * cfg.num_epochs)
        if save_steps < 1.0:  # prevent saves on every step
            cfg.save_steps = save_steps
    if cfg.evals_per_epoch:
        eval_steps = 1.0 / (cfg.evals_per_epoch * cfg.num_epochs)
        if eval_steps < 1.0:  # prevent evals on every step
            cfg.eval_steps = eval_steps

    cfg.dataset_processes = cfg.dataset_processes or os.cpu_count()

    if not cfg.base_model_config:
        cfg.base_model_config = cfg.base_model

    model_config = load_model_config(cfg)
    cfg.model_config_type = model_config.model_type

    # figure out if the model is llama
    cfg.is_llama_derived_model = (
        (hasattr(model_config, "model_type") and model_config.model_type == "llama")
        or cfg.is_llama_derived_model
        or "llama" in cfg.base_model.lower()
        or (cfg.model_type and "llama" in cfg.model_type.lower())
    )

    # figure out if the model is falcon
    cfg.is_falcon_derived_model = (
        (
            hasattr(model_config, "model_type")
            and model_config.model_type
            in [
                "falcon",
                "RefinedWebModel",
                "RefinedWeb",
            ]
        )
        or cfg.is_falcon_derived_model
        or "falcon" in cfg.base_model.lower()
        or (cfg.model_type and "rwforcausallm" in cfg.model_type.lower())
    )

    cfg.is_mistral_derived_model = (
        (
            hasattr(model_config, "model_type")
            and model_config.model_type
            in [
                "mistral",
            ]
        )
        or cfg.is_mistral_derived_model
        or "mistral" in cfg.base_model.lower()
        or (cfg.model_type and "mistral" in cfg.model_type.lower())
    )

    cfg.is_qwen_derived_model = (
        (
            hasattr(model_config, "model_type")
            and model_config.model_type
            in [
                "qwen",
            ]
        )
        or cfg.is_qwen_derived_model
        or "qwen" in cfg.base_model.lower()
        or (cfg.model_type and "qwen" in cfg.model_type.lower())
    )

    if isinstance(cfg.learning_rate, str):
        cfg.learning_rate = float(cfg.learning_rate)

    log_gpu_memory_usage(LOG, "baseline", cfg.device)


def validate_config(cfg):
    if is_torch_bf16_gpu_available():
        if not cfg.bf16 and not cfg.bfloat16:
            LOG.info("bf16 support detected, but not enabled for this configuration.")
    else:
        if not cfg.merge_lora and (cfg.bf16 or cfg.bfloat16):
            raise ValueError(
                "bf16 requested, but AMP is not supported on this GPU. Requires Ampere series or above."
            )
    if cfg.max_packed_sequence_len and cfg.sample_packing:
        raise ValueError(
            "please set only one of max_packed_sequence_len (deprecated soon) or sample_packing"
        )
    if cfg.max_packed_sequence_len:
        LOG.warning(
            str(
                PendingDeprecationWarning(
                    "max_packed_sequence_len will be deprecated in favor of sample_packing"
                )
            )
        )

    if cfg.sample_packing and not cfg.pad_to_sequence_len:
        LOG.warning(
            "`pad_to_sequence_len: true` is recommended when using sample_packing"
        )

    if cfg.gradient_accumulation_steps and cfg.batch_size:
        raise ValueError(
            "please set only one of gradient_accumulation_steps or batch_size"
        )
    if cfg.batch_size:
        LOG.warning(
            "%s\n%s",
            "batch_size is not recommended. Please use gradient_accumulation_steps instead.",
            "To calculate the equivalent gradient_accumulation_steps, divide batch_size / micro_batch_size / number of gpus.",
        )
    if (
        cfg.eval_batch_size
        and cfg.micro_batch_size
        and cfg.eval_batch_size != cfg.micro_batch_size
    ):
        LOG.warning(
            "eval_batch_size != micro_batch_size. This can lead to VRAM instability."
        )

    if cfg.load_4bit:
        raise ValueError("cfg.load_4bit parameter has been deprecated")

    if cfg.adapter == "qlora":
        if cfg.merge_lora:
            # can't merge qlora if loaded in 8bit or 4bit
            if cfg.load_in_8bit:
                raise ValueError("Can't merge qlora if loaded in 8bit")

            if cfg.gptq:
                raise ValueError("Can't merge qlora if gptq")

            if cfg.load_in_4bit:
                raise ValueError("Can't merge qlora if loaded in 4bit")

        else:
            if cfg.load_in_8bit:
                raise ValueError("Can't load qlora in 8bit")

            if cfg.gptq:
                raise ValueError("Can't load qlora if gptq")

            if not cfg.load_in_4bit:
                raise ValueError("Require cfg.load_in_4bit to be True for qlora")

        if cfg.flash_attn_fuse_qkv or cfg.flash_attn_fuse_mlp:
            raise ValueError("Fused modules are not supported with QLoRA")

    if not cfg.load_in_8bit and cfg.adapter == "lora":
        LOG.warning("We recommend setting `load_in_8bit: true` for LORA finetuning")

    if cfg.adapter == "lora" and (cfg.flash_attn_fuse_qkv or cfg.flash_attn_fuse_mlp):
        raise ValueError("Fused modules are not supported with LoRA")

    if cfg.relora_steps:
        if cfg.adapter not in ("lora", "qlora"):
            raise ValueError("cfg.adapter must be lora or qlora to use ReLoRA")

        if cfg.fsdp:
            raise ValueError("fsdp not supported with ReLoRA")

        if cfg.deepspeed:
            raise ValueError("deepspeed not supported with ReLoRA")

        if cfg.lr_scheduler == "one_cycle":
            raise ValueError("ReLoRA is not compatible with the one_cycle scheduler")

        if cfg.flash_attn_fuse_qkv or cfg.flash_attn_fuse_mlp:
            raise ValueError("Fused modules are not supported with ReLoRA")

    if cfg.trust_remote_code:
        LOG.warning(
            "`trust_remote_code` is set to true. Please make sure that you reviewed the remote code/model."
        )

    if cfg.push_dataset_to_hub and cfg.hf_use_auth_token is not True:
        raise ValueError(
            "Require cfg.hf_use_auth_token to be True for push_dataset_to_hub"
        )

    if (cfg.base_model and "falcon" in cfg.base_model.lower()) and cfg.fsdp:
        raise ValueError("FSDP is not supported for falcon models")

    if (
        cfg.base_model and "mpt" in cfg.base_model.lower()
    ) and cfg.gradient_checkpointing:
        raise ValueError("gradient_checkpointing is not supported for MPT models")

    if cfg.flash_optimum is True:
        if cfg.adapter:
            LOG.warning("BetterTransformers probably doesn't work with PEFT adapters")
        if cfg.fp16 or cfg.bf16:
            raise ValueError("AMP is not supported with BetterTransformer")
        if cfg.float16 is not True and cfg.bloat16 is not True:
            LOG.warning(
                "You should probably set bfloat16 or float16 to true to "
                "load the model in float16 for BetterTransformers"
            )
        if int(torch.__version__.split(".", maxsplit=1)[0]) < 2:
            LOG.warning("torch>=2.0.0 required")
            raise ValueError(
                f"flash_optimum for BetterTransformers may not be used with {torch.__version__}"
            )

    if cfg.pretraining_dataset and cfg.group_by_length:
        LOG.warning(
            "You probably want to disable group_by_length as it will force a streamed dataset to download completely."
        )
    if cfg.pretraining_dataset and not cfg.max_steps:
        raise ValueError(
            "max_steps must be set when using iterable pretraining_dataset, Trainer can't infer length and schedule optimizer/learning rate without it!"
        )

    if any([cfg.adam_beta1, cfg.adam_beta2, cfg.adam_epsilon]) and (
        not cfg.optimizer or "adamw" not in cfg.optimizer
    ):
        LOG.warning("adamw hyperparameters found, but no adamw optimizer set")

    if cfg.push_to_hub_model_id:
        raise ValueError(
            "push_to_hub_model_id is deprecated. Please use hub_model_id instead."
        )

    if cfg.gptq and cfg.model_revision:
        raise ValueError(
            "model_revision is not supported for GPTQ models. "
            + "Please download the model from HuggingFace Hub manually for correct branch, "
            + "point to its path, and remove model_revision from the config."
        )

    if cfg.sample_packing and cfg.sdp_attention:
        # incompatible due to bug w/ accelerate causing 0.0 loss when using llama2
        raise ValueError(
            "sample_packing not compatible with sdp_attention. Use flash_attention"
        )

    if cfg.sample_packing and cfg.xformers_attention:
        raise ValueError(
            "sample_packing not compatible with xformers_attention. Use flash_attention"
        )

    if cfg.early_stopping_patience:
        if not cfg.save_steps or not cfg.eval_steps:
            raise ValueError(
                "`early_stopping_patience` requires save_steps and eval_steps to be set. eval_steps should evenly divide save_steps."
            )
        if cfg.save_steps % cfg.eval_steps != 0:
            raise ValueError(
                "`early_stopping_patience` requires that eval_steps should evenly divide save_steps."
            )

    if cfg.model_type == "MixFormerSequentialForCausalLM" and cfg.adapter is not None:
        LOG.warning("Use AutoModelForCausalLM for phi/MixFormer models with qLoRA")

    if cfg.model_config_type == "mixformer-sequential":
        if cfg.sample_packing:
            if cfg.adapter is not None:
                LOG.warning(
                    "phi/MixFormer models are not currently compatible with LoRA and sample_packing"
                )
            if cfg.model_type == "AutoModelForCausalLM":
                raise ValueError(
                    "`model_type: MixFormerSequentialForCausalLM` required for sample_packing"
                )

    if cfg.datasets:
        for idx, ds_cfg in enumerate(cfg.datasets):
            if not ds_cfg.type:
                continue
            if ds_cfg.type == "sharegpt:chat":
                LOG.warning(
                    PendingDeprecationWarning(
                        "`type: sharegpt:chat` will soon be deprecated. simply use `type: sharegpt` instead."
                    )
                )
                cfg.datasets[idx].type = "sharegpt"
            if "sharegpt_simple" in ds_cfg.type:
                LOG.warning(
                    PendingDeprecationWarning(
                        "`type: sharegpt_simple` will soon be deprecated. simply use `type: sharegpt` instead."
                    )
                )
                cfg.datasets[idx].type = cfg.datasets[idx].type.replace(
                    "sharegpt_simple", "sharegpt"
                )

    if cfg.saves_per_epoch and cfg.save_steps:
        raise ValueError(
            "save_steps and saves_per_epoch are mutually exclusive and cannot be used together."
        )
    if cfg.saves_per_epoch and cfg.save_strategy and cfg.save_strategy != "steps":
        raise ValueError(
            "save_strategy must be empty or set to `steps` when used with saves_per_epoch."
        )
    if cfg.evals_per_epoch and cfg.eval_steps:
        raise ValueError(
            "eval_steps and evals_per_epoch are mutually exclusive and cannot be used together."
        )
    if (
        cfg.evals_per_epoch
        and cfg.evaluation_strategy
        and cfg.evaluation_strategy != "steps"
    ):
        raise ValueError(
            "evaluation_strategy must be empty or set to `steps` when used with evals_per_epoch."
        )
    if cfg.save_strategy and cfg.save_steps and cfg.save_strategy != "steps":
        raise ValueError(
            "save_strategy and save_steps mismatch. Please set save_strategy to 'steps' or remove save_steps."
        )

    if (
        cfg.evaluation_strategy
        and cfg.eval_steps
        and cfg.evaluation_strategy != "steps"
    ):
        raise ValueError(
            "evaluation_strategy and eval_steps mismatch. Please set evaluation_strategy to 'steps' or remove eval_steps."
        )

    if cfg.val_set_size == 0 and (cfg.eval_steps or cfg.evaluation_strategy):
        raise ValueError(
            "eval_steps and evaluation_strategy are not supported with val_set_size == 0"
        )

    if (
        cfg.sample_packing
        and cfg.eval_table_size
        and cfg.eval_sample_packing is not False
    ):
        raise ValueError(
            "eval_table_size and eval_sample_packing are not supported together with sample_packing. Please set 'eval_sample_packing' to false."
        )

    if not cfg.adapter and (cfg.load_in_8bit or cfg.load_in_4bit):
        raise ValueError(
            "load_in_8bit and load_in_4bit are not supported without setting an adapter."
            "If you want to full finetune, please turn off load_in_8bit and load_in_4bit."
        )

    if cfg.rope_scaling:
        LOG.warning("`rope_scaling` should now be be a key under `model_config`")

    if cfg.warmup_steps and cfg.warmup_ratio:
        raise ValueError("warmup_steps and warmup_ratio are mutually exclusive")

    if cfg.wandb_run_id and not cfg.wandb_name:
        cfg.wandb_name = cfg.wandb_run_id

        LOG.warning(
            "wandb_run_id sets the ID of the run. If you would like to set the name, please use wandb_name instead."
        )

    if cfg.noisy_embedding_alpha is not None:
        # Deprecated, use neftune_noise_alpha
        LOG.warning("noisy_embedding_alpha is deprecated, use neftune_noise_alpha")
        if cfg.neftune_noise_alpha is None:
            cfg.neftune_noise_alpha = cfg.noisy_embedding_alpha
        else:
            # User is providing both; bail and have them sort out their settings
            raise ValueError(
                "noisy_embedding_alpha is deprecated, use neftune_noise_alpha; both are set, please remove the deprecated noisy_embedding_alpha setting"
            )

    if cfg.neftune_noise_alpha is not None and cfg.neftune_noise_alpha <= 0.0:
        raise ValueError("neftune_noise_alpha must be > 0.0")

    if (
        cfg.adapter
        and cfg.tokens
        and (
            not cfg.lora_modules_to_save
            or not all(
                x in cfg.lora_modules_to_save for x in ["embed_tokens", "lm_head"]
            )
        )
    ):
        raise ValueError(
            "lora_modules_to_save not properly set yet adding new tokens. Please add `embed_tokens` and `lm_head` to `lora_modules_to_save`."
        )

    # TODO
    # MPT 7b
    # https://github.com/facebookresearch/bitsandbytes/issues/25
    # no 8bit adaAmw w bf16

    # GPT-NeoX
    # evals broken when extending context len
    # File "/root/miniconda3/envs/py3.9/lib/python3.9/site-packages/transformers/models/gpt_neox/modeling_gpt_neox.py", line 162, in forward                        attn_output, attn_weights = self._attn(query, key, value, attention_mask, head_mask)
    # File "/root/miniconda3/envs/py3.9/lib/python3.9/site-packages/optimum/bettertransformer/models/attention.py", line 74, in gpt2_wrapped_scaled_dot_product
    # attention_mask = causal_mask + attention_mask
    # RuntimeError: The size of tensor a (2048) must match the size of tensor b (8132) at non-singleton dimension 3