File size: 34,779 Bytes
4c0eddb eea2731 2bb0b78 6045345 553c80f 6045345 c7cf381 6045345 488a67d 5bce45f 2bb0b78 8d43785 badda37 553c80f 2809f3f 6045345 1c412c7 2ce5c0d 4ea9a66 7523d1f 6045345 37293dc 6045345 37293dc 6045345 37293dc 6045345 1365073 6045345 cf68153 37293dc 1365073 1a6309c 37293dc ce34d64 e50ab07 6045345 553c80f d2e7f27 fc2d6be 81d3845 2e22404 553c80f 2e22404 6045345 553a86b 2e22404 0b4cf5b 2e22404 e50ab07 2e22404 cb9797e cda52dc 2e22404 553c80f 2ce5c0d 553c80f c7cf381 2e22404 553c80f c7cf381 2e22404 c7cf381 2e22404 e50ab07 2e22404 797f3dd 2e22404 641e6f7 2e22404 641e6f7 e50ab07 553a86b 6045345 ce34d64 cda52dc 1a6309c cda52dc 2809f3f 6045345 0b4cf5b 6045345 4a17a4c cb7cd34 32580c1 cb7cd34 48630f5 8c2e05a cda52dc 48630f5 392dfd9 cb7cd34 0b4cf5b 6045345 1d5ab84 e50ab07 1c33eb8 1d5ab84 ce34d64 37293dc 69fac9a ce34d64 cda52dc a1f9850 1d5ab84 6045345 1d5ab84 1e56b88 553a86b 6045345 553a86b 6045345 553a86b 2ce5c0d 32580c1 2ce5c0d 2cfe9e9 553a86b 2cfe9e9 6045345 5ac3392 cb7cd34 cda52dc 6045345 37293dc e50ab07 37293dc 69fac9a 37293dc 6045345 badda37 6045345 3cc67d2 6045345 e50ab07 9bdd30c 575a082 9bdd30c 3cc67d2 9bdd30c d2e7f27 e50ab07 9bdd30c 6045345 88089e8 e50ab07 88089e8 e50ab07 69fac9a 88089e8 3cc67d2 91cf4ee 6045345 e50ab07 8fe0e63 e50ab07 8fe0e63 e50ab07 8fe0e63 e50ab07 8fe0e63 e50ab07 8fe0e63 e50ab07 8fe0e63 88089e8 e50ab07 88089e8 8d43785 392dfd9 d2e7f27 e50ab07 d2e7f27 cda52dc 409ca0f cda52dc aac4b76 e50ab07 c7cf381 e50ab07 2bb0b78 fe28543 2bb0b78 2ce5c0d 814aee6 2ce5c0d 1c412c7 b1f4f7a 6045345 1d5ab84 553a86b 1d5ab84 ce34d64 6045345 e50ab07 aa3c3f9 3cc67d2 ce34d64 37293dc cda52dc 1a6309c 2ce5c0d 5787e1a aa3c3f9 097d367 553a86b 2bc1a5b 37293dc 2bc1a5b 097d367 cda52dc 2bb0b78 0b4cf5b 2bb0b78 1a6309c 2bb0b78 ab5cd28 cda52dc ab5cd28 6045345 e50ab07 c7cf381 e50ab07 3db5f2f e50ab07 c7cf381 e50ab07 cdc71f7 7570446 3db5f2f cdc71f7 e50ab07 cdc71f7 7570446 3db5f2f cdc71f7 e50ab07 cdc71f7 7570446 3db5f2f cdc71f7 e50ab07 cdc71f7 7570446 3db5f2f cdc71f7 e50ab07 cdc71f7 7570446 3db5f2f cdc71f7 e50ab07 cdc71f7 7570446 3db5f2f cdc71f7 e50ab07 cdc71f7 7570446 3db5f2f cdc71f7 e50ab07 cdc71f7 7570446 3db5f2f cdc71f7 e50ab07 cdc71f7 7570446 3db5f2f cdc71f7 e50ab07 cdc71f7 7570446 3db5f2f cdc71f7 e50ab07 488a67d 2f586d1 eea2731 2f586d1 eea2731 553a86b eea2731 488a67d c7cf381 553c80f c7cf381 553c80f c7cf381 553c80f c7cf381 553c80f c7cf381 2f586d1 c7cf381 1157950 2f586d1 eea2731 553c80f c7cf381 553c80f c7cf381 553c80f 00568c1 553c80f 81d3845 553c80f 00568c1 c7cf381 00568c1 553c80f 00568c1 553c80f 7523d1f 5bce45f 7523d1f 1e3d530 7523d1f 5bce45f 7523d1f 5bce45f 7523d1f 5bce45f 7523d1f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 |
"""Module containing data utilities"""
import functools
import hashlib
import logging
from collections import defaultdict
from pathlib import Path
from typing import Any, Callable, Dict, List, Optional, Tuple, Union
import torch
import yaml
from datasets import (
Dataset,
DatasetDict,
concatenate_datasets,
load_dataset,
load_from_disk,
)
from huggingface_hub import hf_hub_download
from huggingface_hub.utils import HFValidationError
from torch.utils.data import RandomSampler
from transformers import PreTrainedTokenizerBase
from axolotl.common.const import DEFAULT_DATASET_PREPARED_PATH
from axolotl.datasets import TokenizedPromptDataset
from axolotl.prompt_strategies import load
from axolotl.prompt_strategies.dpo import load as load_dpo
from axolotl.prompt_tokenizers import (
AlpacaMultipleChoicePromptTokenizingStrategy,
AlpacaPromptTokenizingStrategy,
AlpacaReflectionPTStrategy,
GPTeacherPromptTokenizingStrategy,
JeopardyPromptTokenizingStrategy,
OpenAssistantPromptTokenizingStrategy,
SummarizeTLDRPromptTokenizingStrategy,
)
from axolotl.prompters import (
AlpacaPrompter,
GPTeacherPrompter,
JeopardyPrompter,
MultipleChoiceConcisePrompter,
MultipleChoiceExplainPrompter,
Prompter,
ReflectAlpacaPrompter,
SummarizeTLDRPrompter,
UnsupportedPrompter,
)
from axolotl.utils.collators import PretrainingBatchSamplerDataCollatorForSeq2Seq
from axolotl.utils.dict import DictDefault
from axolotl.utils.distributed import is_main_process, zero_first
from axolotl.utils.samplers import MultipackBatchSampler, get_dataset_lengths
from axolotl.utils.trainer import (
calculate_total_num_steps,
process_datasets_for_packing,
process_pretraining_datasets_for_packing,
)
LOG = logging.getLogger("axolotl")
def md5(to_hash: str, encoding: str = "utf-8") -> str:
try:
return hashlib.md5(to_hash.encode(encoding), usedforsecurity=False).hexdigest()
except TypeError:
return hashlib.md5(to_hash.encode(encoding)).hexdigest() # nosec
def prepare_dataset(cfg, tokenizer):
prompters = []
if not cfg.pretraining_dataset:
with zero_first(is_main_process()):
if cfg.test_datasets:
train_dataset, _, prompters = load_prepare_datasets(
tokenizer, cfg, DEFAULT_DATASET_PREPARED_PATH, split="train"
)
_, eval_dataset, _ = load_prepare_datasets(
tokenizer, cfg, DEFAULT_DATASET_PREPARED_PATH, split="test"
)
else:
train_dataset, eval_dataset, prompters = load_prepare_datasets(
tokenizer, cfg, DEFAULT_DATASET_PREPARED_PATH
)
else:
path = cfg.pretraining_dataset
name = None
if isinstance(cfg.pretraining_dataset, list) and isinstance(
cfg.pretraining_dataset[0], dict
):
path = cfg.pretraining_dataset[0]["path"]
name = cfg.pretraining_dataset[0]["name"]
ds_wrapper_partial = functools.partial(
get_dataset_wrapper,
cfg.pretraining_dataset[0],
tokenizer,
cfg,
cfg.pretraining_dataset[0]["type"] or "pretrain",
)
train_dataset = wrap_pretraining_dataset(
load_dataset(path, streaming=True, split="train", name=name),
tokenizer,
cfg,
ds_wrapper_partial,
max_tokens=cfg.sequence_len,
batch_size=cfg.micro_batch_size,
seed=cfg.seed or 42,
)
# https://discuss.huggingface.co/t/how-to-use-huggingface-trainer-streaming-datasets-without-wrapping-it-with-torchdatas-iterablewrapper/25230
train_dataset = train_dataset.with_format("torch")
eval_dataset = None
return train_dataset, eval_dataset, cfg.max_steps, prompters
if eval_dataset and cfg.sample_packing and cfg.eval_sample_packing is not False:
total_eval_steps = calculate_total_num_steps(cfg, eval_dataset, update=False)
if total_eval_steps == 0:
raise ValueError(
"eval dataset split is too small for sample_packing. You should set `eval_sample_packing: False`. "
)
if cfg.max_steps:
total_num_steps = min(
calculate_total_num_steps(cfg, train_dataset), cfg.max_steps
)
LOG.info(f"Maximum number of steps set at {total_num_steps}")
else:
total_num_steps = calculate_total_num_steps(cfg, train_dataset)
return train_dataset, eval_dataset, total_num_steps, prompters
def load_tokenized_prepared_datasets(
tokenizer,
cfg,
default_dataset_prepared_path,
split="train",
) -> Tuple[DatasetDict, List[Prompter]]:
cfg_datasets = cfg.test_datasets if split == "test" else cfg.datasets
tokenizer_name = tokenizer.__class__.__name__
ds_hash = str(
md5(
(
str(cfg.sequence_len)
+ "@"
+ str(cfg.sample_packing)
+ "@"
+ str(cfg.eval_sample_packing)
+ "@"
+ str(cfg.group_by_length)
+ "@"
+ "|".join(
sorted(
[
f"{d.path}:{d.type}:{d.shards}:{d.conversation}{d.split}"
for d in cfg_datasets
]
)
)
+ "|"
+ tokenizer_name
)
)
)
prepared_ds_path = (
Path(cfg.dataset_prepared_path) / ds_hash
if cfg.dataset_prepared_path
else Path(default_dataset_prepared_path) / ds_hash
)
dataset = None
prompters = []
use_auth_token = cfg.hf_use_auth_token
try:
if cfg.push_dataset_to_hub:
dataset = load_dataset(
f"{cfg.push_dataset_to_hub}/{ds_hash}",
token=use_auth_token,
)
dataset = dataset[split]
except Exception: # pylint: disable=broad-except # nosec
pass
if dataset:
...
elif (
cfg.dataset_prepared_path
and any(prepared_ds_path.glob("*"))
and not cfg.is_preprocess
):
LOG.info(f"Loading prepared dataset from disk at {prepared_ds_path}...")
dataset = load_from_disk(str(prepared_ds_path))
LOG.info("Prepared dataset loaded from disk...")
else:
LOG.info(f"Unable to find prepared dataset in {prepared_ds_path}")
LOG.info("Loading raw datasets...")
if not cfg.is_preprocess:
LOG.warning(
"Processing datasets during training can lead to VRAM instability. Please pre-process your dataset."
)
if cfg.seed:
seed = cfg.seed
else:
LOG.info("No seed provided, using default seed of 42")
seed = 42
datasets = []
def for_d_in_datasets(dataset_configs):
for dataset in dataset_configs:
if dataset.name and isinstance(dataset.name, list):
for name in dataset.name:
yield DictDefault({**dataset, "name": name})
else:
yield dataset
# pylint: disable=invalid-name
for config_dataset in for_d_in_datasets(cfg_datasets):
ds: Optional[Union[Dataset, DatasetDict]] = None
ds_from_hub = False
try:
load_dataset(
config_dataset.path,
name=config_dataset.name,
streaming=True,
token=use_auth_token,
)
ds_from_hub = True
except (FileNotFoundError, ConnectionError, HFValidationError):
pass
ds_from_cloud = False
storage_options = {}
remote_file_system = None
if config_dataset.path.startswith("s3://"):
try:
import aiobotocore.session # type: ignore
import s3fs # type: ignore
except ImportError as exc:
raise ImportError(
"s3:// paths require aiobotocore and s3fs to be installed"
) from exc
# Takes credentials from ~/.aws/credentials for default profile
s3_session = aiobotocore.session.AioSession(profile="default")
storage_options = {"session": s3_session}
remote_file_system = s3fs.S3FileSystem(**storage_options)
elif config_dataset.path.startswith(
"gs://"
) or config_dataset.path.startswith("gcs://"):
try:
import gcsfs # type: ignore
except ImportError as exc:
raise ImportError(
"gs:// or gcs:// paths require gcsfs to be installed"
) from exc
# gcsfs will use default credentials from the environment else anon
# https://gcsfs.readthedocs.io/en/latest/#credentials
storage_options = {"token": None}
remote_file_system = gcsfs.GCSFileSystem(**storage_options)
# TODO: Figure out how to get auth creds passed
# elif config_dataset.path.startswith("adl://") or config_dataset.path.startswith("abfs://"):
# try:
# import adlfs
# except ImportError as exc:
# raise ImportError(
# "adl:// or abfs:// paths require adlfs to be installed"
# ) from exc
# # Gen 1
# storage_options = {
# "tenant_id": TENANT_ID,
# "client_id": CLIENT_ID,
# "client_secret": CLIENT_SECRET,
# }
# # Gen 2
# storage_options = {
# "account_name": ACCOUNT_NAME,
# "account_key": ACCOUNT_KEY,
# }
# remote_file_system = adlfs.AzureBlobFileSystem(**storage_options)
try:
if remote_file_system and remote_file_system.exists(
config_dataset.path
):
ds_from_cloud = True
except (FileNotFoundError, ConnectionError):
pass
# prefer local dataset, even if hub exists
local_path = Path(config_dataset.path)
if local_path.exists():
if local_path.is_dir():
# TODO dirs with arrow or parquet files could be loaded with `load_from_disk`
ds = load_dataset(
config_dataset.path,
name=config_dataset.name,
data_files=config_dataset.data_files,
streaming=False,
split=None,
)
elif local_path.is_file():
ds_type = get_ds_type(config_dataset)
ds = load_dataset(
ds_type,
name=config_dataset.name,
data_files=config_dataset.path,
streaming=False,
split=None,
)
else:
raise ValueError(
"unhandled dataset load: local path exists, but is neither a directory or a file"
)
elif ds_from_hub:
ds = load_dataset(
config_dataset.path,
name=config_dataset.name,
streaming=False,
data_files=config_dataset.data_files,
token=use_auth_token,
)
elif ds_from_cloud and remote_file_system:
if remote_file_system.isdir(config_dataset.path):
ds = load_from_disk(
config_dataset.path,
storage_options=storage_options,
)
elif remote_file_system.isfile(config_dataset.path):
ds_type = get_ds_type(config_dataset)
ds = load_dataset(
ds_type,
name=config_dataset.name,
data_files=config_dataset.path,
streaming=False,
split=None,
storage_options=storage_options,
)
elif config_dataset.path.startswith("https://"):
ds_type = get_ds_type(config_dataset)
ds = load_dataset(
ds_type,
name=config_dataset.name,
data_files=config_dataset.path,
streaming=False,
split=None,
storage_options=storage_options,
)
else:
if isinstance(config_dataset.data_files, str):
fp = hf_hub_download(
repo_id=config_dataset.path,
repo_type="dataset",
filename=config_dataset.data_files,
)
elif isinstance(config_dataset.data_files, list):
fp = []
for file in config_dataset.data_files:
fp.append(
hf_hub_download(
repo_id=config_dataset.path,
repo_type="dataset",
filename=file,
)
)
else:
raise ValueError(
"data_files must be either a string or list of strings"
)
ds = load_dataset(
"json",
name=config_dataset.name,
data_files=fp,
streaming=False,
split=None,
)
if not ds:
raise ValueError("unhandled dataset load")
d_base_type = d_prompt_style = None
d_type = config_dataset.type
if isinstance(d_type, str):
d_type_split = d_type.split(":")
d_base_type = d_type_split[0]
d_prompt_style = d_type_split[1] if len(d_type_split) > 1 else None
if config_dataset.split and config_dataset.split in ds:
ds = ds[config_dataset.split]
elif split in ds:
ds = ds[split]
elif isinstance(ds, DatasetDict):
raise ValueError(
f"no {split} split found for dataset {config_dataset.path}, you may specify a split with 'split: `"
)
# support for using a subset of the data
if config_dataset.shards:
shards_idx = config_dataset.get("shards_idx", 0)
ds = ds.shuffle(seed=seed).shard(
num_shards=config_dataset.shards, index=shards_idx
)
dataset_wrapper, dataset_prompter = get_dataset_wrapper(
config_dataset=config_dataset,
tokenizer=tokenizer,
cfg=cfg,
dataset=ds,
d_base_type=d_base_type,
d_prompt_style=d_prompt_style,
)
datasets.append(dataset_wrapper)
prompters.append(dataset_prompter)
LOG.info("merging datasets")
dataset = concatenate_datasets(datasets)
if len(datasets) > 1:
LOG.info("shuffle merged datasets")
dataset = dataset.shuffle(seed=seed)
dataset, _ = process_datasets_for_packing(cfg, dataset, None)
if cfg.local_rank == 0:
LOG.info(f"Saving merged prepared dataset to disk... {prepared_ds_path}")
dataset.save_to_disk(prepared_ds_path)
if cfg.push_dataset_to_hub:
LOG.info(
f"Saving merged prepared dataset with push_to_hub... {cfg.push_dataset_to_hub}/{ds_hash}"
)
dataset.push_to_hub(
f"{cfg.push_dataset_to_hub}/{ds_hash}", private=True
)
return dataset, prompters
def get_ds_type(config_dataset: DictDefault):
"""
Get the dataset type from the path if it's not specified
"""
ds_type = "json"
if config_dataset.ds_type:
ds_type = config_dataset.ds_type
elif ".parquet" in config_dataset.path:
ds_type = "parquet"
elif ".arrow" in config_dataset.path:
ds_type = "arrow"
elif ".csv" in config_dataset.path:
ds_type = "csv"
elif ".txt" in config_dataset.path:
ds_type = "text"
return ds_type
def load_prepare_datasets(
tokenizer: PreTrainedTokenizerBase,
cfg,
default_dataset_prepared_path,
split="train",
) -> Tuple[Dataset, Dataset, List[Prompter]]:
dataset, prompters = load_tokenized_prepared_datasets(
tokenizer, cfg, default_dataset_prepared_path, split=split
)
if cfg.dataset_shard_num and cfg.dataset_shard_idx is not None:
LOG.info(
f"Using index #{cfg.dataset_shard_idx} of {cfg.dataset_shard_num} shards"
)
dataset = dataset.shard(
num_shards=cfg.dataset_shard_num,
index=cfg.dataset_shard_idx,
)
if split == "train" and cfg.val_set_size:
# ensure we end up with the same fingerprint by doing rank0 first and being able to cache
to_hash_train = (
dataset._fingerprint # pylint: disable=protected-access
+ "|"
+ str(cfg.val_set_size)
+ "|"
+ "train"
+ "|"
+ str(cfg.seed or 42)
)
to_hash_test = (
dataset._fingerprint # pylint: disable=protected-access
+ "|"
+ str(cfg.val_set_size)
+ "|"
+ "test"
+ "|"
+ str(cfg.seed or 42)
)
train_fingerprint = md5(to_hash_train)
test_fingerprint = md5(to_hash_test)
dataset = dataset.train_test_split(
test_size=cfg.val_set_size,
shuffle=False,
seed=cfg.seed or 42,
train_new_fingerprint=train_fingerprint,
test_new_fingerprint=test_fingerprint,
)
train_dataset = dataset["train"]
eval_dataset = dataset["test"]
elif split == "test":
train_dataset = None
eval_dataset = dataset
else:
train_dataset = dataset
eval_dataset = None
return train_dataset, eval_dataset, prompters
def get_dataset_wrapper(
config_dataset,
tokenizer,
cfg,
d_base_type,
dataset,
d_prompt_style=None,
):
dataset_wrapper = None
dataset_prompter = None
ds_kwargs = {
"process_count": cfg.dataset_processes,
"keep_in_memory": cfg.dataset_keep_in_memory is True,
}
if (
isinstance(dataset, Dataset)
and "input_ids" in dataset.features
and "attention_mask" in dataset.features
and "labels" in dataset.features
):
# dataset is already tokenized, just drop it straight in
dataset_prompter = UnsupportedPrompter()
dataset_wrapper = dataset
elif isinstance(config_dataset.type, DictDefault):
ds_strategy = load(
"user_defined", tokenizer, cfg, config_dataset.type.to_dict()
)
dataset_prompter = UnsupportedPrompter()
dataset_wrapper = TokenizedPromptDataset(
ds_strategy,
dataset,
**ds_kwargs,
)
elif ds_strategy := load(config_dataset.type, tokenizer, cfg, config_dataset):
dataset_prompter = UnsupportedPrompter()
dataset_wrapper = TokenizedPromptDataset(
ds_strategy,
dataset,
**ds_kwargs,
)
elif d_base_type == "alpaca":
dataset_prompter = AlpacaPrompter(d_prompt_style)
ds_strategy = AlpacaPromptTokenizingStrategy(
dataset_prompter,
tokenizer,
cfg.train_on_inputs,
cfg.sequence_len,
)
ds_wrapper = TokenizedPromptDataset(
ds_strategy,
dataset,
**ds_kwargs,
)
dataset_wrapper = ds_wrapper
elif d_base_type == "explainchoice":
dataset_prompter = MultipleChoiceExplainPrompter(d_prompt_style)
ds_strategy = AlpacaMultipleChoicePromptTokenizingStrategy(
dataset_prompter,
tokenizer,
cfg.train_on_inputs,
cfg.sequence_len,
)
ds_wrapper = TokenizedPromptDataset(
ds_strategy,
dataset,
**ds_kwargs,
)
dataset_wrapper = ds_wrapper
elif d_base_type == "concisechoice":
dataset_prompter = MultipleChoiceConcisePrompter(d_prompt_style)
ds_strategy = AlpacaMultipleChoicePromptTokenizingStrategy(
dataset_prompter,
tokenizer,
cfg.train_on_inputs,
cfg.sequence_len,
)
ds_wrapper = TokenizedPromptDataset(
ds_strategy,
dataset,
**ds_kwargs,
)
dataset_wrapper = ds_wrapper
elif d_base_type == "summarizetldr":
dataset_prompter = SummarizeTLDRPrompter(d_prompt_style)
ds_strategy = SummarizeTLDRPromptTokenizingStrategy(
dataset_prompter,
tokenizer,
cfg.train_on_inputs,
cfg.sequence_len,
)
ds_wrapper = TokenizedPromptDataset(
ds_strategy,
dataset,
**ds_kwargs,
)
dataset_wrapper = ds_wrapper
elif d_base_type == "jeopardy":
dataset_prompter = JeopardyPrompter(d_prompt_style)
ds_strategy = JeopardyPromptTokenizingStrategy(
dataset_prompter,
tokenizer,
cfg.train_on_inputs,
cfg.sequence_len,
)
ds_wrapper = TokenizedPromptDataset(
ds_strategy,
dataset,
**ds_kwargs,
)
dataset_wrapper = ds_wrapper
elif d_base_type == "oasst":
dataset_prompter = AlpacaPrompter(d_prompt_style)
ds_strategy = OpenAssistantPromptTokenizingStrategy(
dataset_prompter,
tokenizer,
cfg.train_on_inputs,
cfg.sequence_len,
)
ds_wrapper = TokenizedPromptDataset(
ds_strategy,
dataset,
**ds_kwargs,
)
dataset_wrapper = ds_wrapper
elif d_base_type == "gpteacher":
dataset_prompter = GPTeacherPrompter(d_prompt_style)
ds_strategy = GPTeacherPromptTokenizingStrategy(
dataset_prompter,
tokenizer,
cfg.train_on_inputs,
cfg.sequence_len,
)
ds_wrapper = TokenizedPromptDataset(
ds_strategy,
dataset,
**ds_kwargs,
)
dataset_wrapper = ds_wrapper
elif d_base_type == "reflection":
dataset_prompter = ReflectAlpacaPrompter(d_prompt_style)
ds_strategy = AlpacaReflectionPTStrategy(
dataset_prompter,
tokenizer,
cfg.train_on_inputs,
cfg.sequence_len,
)
ds_wrapper = TokenizedPromptDataset(
ds_strategy,
dataset,
**ds_kwargs,
)
dataset_wrapper = ds_wrapper
else:
suffix = ""
if ":load_" in config_dataset.type:
suffix = f" Did you mean {config_dataset.type.replace(':load_', '.load_')}?"
LOG.error(
f"unhandled prompt tokenization strategy: {config_dataset.type}. {suffix}"
)
raise ValueError(
f"unhandled prompt tokenization strategy: {config_dataset.type} {suffix}"
)
return dataset_wrapper, dataset_prompter
def encode_pretraining(
tokenizer: PreTrainedTokenizerBase, max_tokens: int, examples: List[str]
) -> Dict[str, List]:
res = tokenizer(
examples,
truncation=True,
max_length=max_tokens - 2,
add_special_tokens=True,
)
# Convert to PyTorch tensors
input_ids = [torch.tensor(seq) for seq in res["input_ids"]]
attention_mask = [torch.tensor(seq) for seq in res["attention_mask"]]
new_input_ids = []
new_attention_mask = []
# Append EOS and PAD tokens to input_ids, and correct attention_mask
for i, _ in enumerate(input_ids):
input_ids[i] = torch.cat(
(
input_ids[i],
torch.tensor([tokenizer.eos_token_id, tokenizer.pad_token_id]),
),
dim=0,
)
attention_mask[i] = torch.cat((attention_mask[i], torch.tensor([1, 0])), dim=0)
# Concatenate tokens so that their lengths are less than max_tokens
buffer_input_ids = torch.tensor([], dtype=torch.long)
buffer_attention_mask = torch.tensor([], dtype=torch.long)
for ids, mask in zip(input_ids, attention_mask):
if buffer_input_ids.numel() == max_tokens:
new_input_ids.append(buffer_input_ids)
new_attention_mask.append(buffer_attention_mask)
buffer_input_ids = torch.tensor([], dtype=torch.long)
buffer_attention_mask = torch.tensor([], dtype=torch.long)
buffer_input_ids = torch.cat((buffer_input_ids, ids), dim=0)
buffer_attention_mask = torch.cat((buffer_attention_mask, mask), dim=0)
elif buffer_input_ids.numel() + ids.numel() <= max_tokens:
buffer_input_ids = torch.cat((buffer_input_ids, ids), dim=0)
buffer_attention_mask = torch.cat((buffer_attention_mask, mask), dim=0)
else:
buffer_input_ids = torch.cat(
(
buffer_input_ids,
torch.full(
(max_tokens - buffer_input_ids.numel(),),
tokenizer.pad_token_id,
dtype=torch.long,
),
),
dim=0,
)
buffer_attention_mask = torch.cat(
(
buffer_attention_mask,
torch.full(
(max_tokens - buffer_attention_mask.numel(),),
0,
dtype=torch.long,
),
),
dim=0,
)
new_input_ids.append(buffer_input_ids)
new_attention_mask.append(buffer_attention_mask)
buffer_input_ids = torch.tensor([], dtype=torch.long)
buffer_attention_mask = torch.tensor([], dtype=torch.long)
buffer_input_ids = torch.cat((buffer_input_ids, ids), dim=0)
buffer_attention_mask = torch.cat((buffer_attention_mask, mask), dim=0)
if buffer_input_ids.numel() > 0: # for any leftover tokens
while buffer_input_ids.numel() < max_tokens: # make all sequences equal in size
buffer_input_ids = torch.cat(
(
buffer_input_ids,
torch.full(
(max_tokens - buffer_input_ids.numel(),),
tokenizer.pad_token_id,
dtype=torch.long,
),
),
dim=0,
)
buffer_attention_mask = torch.cat(
(
buffer_attention_mask,
torch.full(
(max_tokens - buffer_attention_mask.numel(),),
0,
dtype=torch.long,
),
),
dim=0,
)
new_input_ids.append(buffer_input_ids)
new_attention_mask.append(buffer_attention_mask)
ret = {
"input_ids": [seq.tolist() for seq in new_input_ids],
"labels": [seq.tolist() for seq in new_input_ids],
"attention_mask": [seq.tolist() for seq in new_attention_mask],
}
LOG.debug(len(ret["input_ids"]))
return ret
def wrap_pretraining_dataset(
dataset,
tokenizer,
cfg,
ds_wrapper_fn,
max_tokens=2048,
batch_size=1,
seed=42,
buffer_size=10_000,
):
if cfg.sample_packing:
collate_fn = PretrainingBatchSamplerDataCollatorForSeq2Seq(
tokenizer,
return_tensors="pt",
padding=True,
pad_to_multiple_of=max_tokens * batch_size,
)
encode = functools.partial(
encode_packed_pretraining,
collate_fn,
ds_wrapper_fn,
max_seq_length=max_tokens,
batch_size=batch_size,
)
# set this to 1 so downstream data_loader doesn't try to increase the batch again
cfg.micro_batch_size = 1
else:
encode = functools.partial(encode_pretraining, tokenizer, max_tokens)
dataset = dataset.shuffle(seed=seed, buffer_size=buffer_size)
dataset = dataset.map(
encode,
batched=True,
batch_size=buffer_size,
# input_columns="text",
# remove all the existing columns after mapping since they end up having
# a different length than the encoded/tokenized column
remove_columns=dataset.features.keys(),
)
return dataset
def encode_packed_pretraining(
collate_fn,
ds_wrapper: Callable,
examples: Dict[str, List],
max_seq_length: int = 2048,
batch_size: int = 4,
) -> Dict[str, List]:
# pylint: disable=duplicate-code
# tokenize all the examples
# rows get split with stride (overlap)
train_dataset = ds_wrapper(Dataset.from_dict(examples))[0]
train_dataset = process_pretraining_datasets_for_packing(
train_dataset, max_seq_length
)
sampler = MultipackBatchSampler(
RandomSampler(train_dataset),
batch_size=1,
drop_last=True,
batch_max_len=batch_size * max_seq_length,
lengths=get_dataset_lengths(train_dataset),
)
chunked_data = defaultdict(list)
for batch in sampler:
for data in batch:
features = train_dataset[data]
if "num_truncated_tokens" in features:
del features["num_truncated_tokens"]
if "num_truncated_tokens" in features:
del features["num_truncated_tokens"]
if "overflow_to_sample_mapping" in features:
del features["overflow_to_sample_mapping"]
if "labels" not in features:
features["labels"] = features["input_ids"].copy()
collated_features = collate_fn(features)
for feature in features.keys():
if feature == "length":
continue
chunked_data[feature].append(collated_features[feature].squeeze(0))
return chunked_data
def _get_path(ds_hash, cfg):
prepared_ds_path = (
Path(cfg.dataset_prepared_path) / ds_hash
if cfg.dataset_prepared_path
else Path(DEFAULT_DATASET_PREPARED_PATH) / ds_hash
)
return prepared_ds_path
def _load_preprocessed_ds(cfg, sub_cfg):
ds_hash = md5(yaml.dump(sub_cfg, Dumper=yaml.Dumper))
prepared_ds_path = _get_path(ds_hash, cfg)
dataset = None
if (
cfg.dataset_prepared_path
and any(prepared_ds_path.glob("*"))
and not cfg.is_preprocess
):
LOG.info(f"Loading prepared dataset from disk at {prepared_ds_path}...")
dataset = load_from_disk(str(prepared_ds_path))
return dataset
def _save_preprocessed_ds(cfg, sub_cfg, dataset):
ds_hash = md5(yaml.dump(sub_cfg, Dumper=yaml.Dumper))
prepared_ds_path = _get_path(ds_hash, cfg)
if cfg.is_preprocess and is_main_process():
LOG.info(f"Loading prepared dataset from disk at {prepared_ds_path}...")
dataset.save_to_disk(str(prepared_ds_path))
def load_prepare_dpo_datasets(cfg):
def load_split(dataset_cfgs, _cfg):
split_datasets: List[Any] = []
for i, ds_cfg in enumerate(dataset_cfgs):
if ds_cfg["ds_type"] == "json":
for data_file in ds_cfg["data_files"]:
data_files = {ds_cfg["split"]: data_file}
ds = load_dataset( # pylint: disable=invalid-name
"json",
data_files=data_files,
split=ds_cfg["split"],
)
split_datasets.insert(i, ds)
else:
ds = load_dataset( # pylint: disable=invalid-name
ds_cfg["path"],
split=ds_cfg["split"],
)
split_datasets.insert(i, ds)
for i, data_set in enumerate(split_datasets):
_type = dataset_cfgs[i]["type"]
if _type:
if isinstance(_type, DictDefault):
_type = "user_defined.default"
ds_transform_fn = load_dpo(_type, _cfg, dataset_idx=i)
split_datasets[i] = data_set.map(
ds_transform_fn,
desc="Mapping RL Dataset",
)
else:
# If no `type` is provided, assume the dataset is already in the expected format with
# "prompt", "chosen" and "rejected" already preprocessed
split_datasets[i] = data_set
return concatenate_datasets(split_datasets)
with zero_first(is_main_process()):
train_is_preprocessed = False
eval_is_preprocessed = False
if train_dataset := _load_preprocessed_ds(cfg, cfg.datasets):
train_is_preprocessed = True
else:
train_dataset = load_split(cfg.datasets, cfg)
eval_dataset = None
if cfg.test_datasets:
if eval_dataset := _load_preprocessed_ds(cfg, cfg.test_datasets):
eval_is_preprocessed = True
else:
eval_dataset = load_split(cfg.test_datasets, cfg)
if not eval_dataset:
eval_dataset = None
if not train_is_preprocessed:
_save_preprocessed_ds(cfg, cfg.datasets, train_dataset)
if eval_dataset and not eval_is_preprocessed:
_save_preprocessed_ds(cfg, cfg.test_datasets, eval_dataset)
return train_dataset, eval_dataset
|