qwerrwe / src /axolotl /utils /schedulers.py
jinwonkim93's picture
Scheduler implementation of Continual Pre-Training of Large Language Models: How to (re)warm your model? (#1273)
8430db2 unverified
raw
history blame
7.66 kB
"""Module for custom LRScheduler class"""
import math
from functools import partial
from torch.optim import Optimizer
from torch.optim.lr_scheduler import LambdaLR, LRScheduler
class InterpolatingLogScheduler(LRScheduler):
"""
A scheduler that interpolates learning rates in a logarithmic fashion
"""
def __init__(self, optimizer, num_steps, min_lr, max_lr, last_epoch=-1):
"""A scheduler that interpolates learning rates in a logarithmic fashion
Args:
- optimizer: pytorch optimizer
- num_steps: int, the number of steps over which to increase from the min_lr to the max_lr
- min_lr: float, the minimum learning rate
- max_lr: float, the maximum learning rate
Usage:
fc = nn.Linear(1,1)
optimizer = optim.Adam(fc.parameters())
lr_scheduler = InterpolatingLogScheduler(optimizer, num_steps=400, min_lr=1e-6, max_lr=1e-4)
"""
self.num_steps = num_steps
self.min_lr = min_lr
self.max_lr = max_lr
self.q = (max_lr / min_lr) ** ( # pylint: disable=invalid-name
1 / (num_steps - 1)
)
super().__init__(optimizer, last_epoch)
def get_lr(self):
if self.last_epoch <= 0:
lrs = [self.min_lr for base_lr in self.base_lrs]
elif self.last_epoch < self.num_steps:
lrs = [
self.min_lr * (self.q ** (self.last_epoch - 1))
for base_lr in self.base_lrs
]
else:
lrs = [self.max_lr for base_lr in self.base_lrs]
return lrs
def _get_cosine_schedule_with_quadratic_warmup_lr_lambda(
current_step: int,
*,
num_warmup_steps: int,
num_training_steps: int,
num_cycles: float,
):
if current_step < num_warmup_steps:
return (float(current_step) / float(max(1, num_warmup_steps))) ** 2
progress = float(current_step - num_warmup_steps) / float(
max(1, num_training_steps - num_warmup_steps)
)
return max(
0.0, 0.5 * (1.0 + math.cos(math.pi * float(num_cycles) * 2.0 * progress))
)
def get_cosine_schedule_with_quadratic_warmup(
optimizer: Optimizer,
num_warmup_steps: int,
num_training_steps: int,
num_cycles: float = 0.5,
last_epoch: int = -1,
):
"""
Create a schedule with a learning rate that decreases following the values of the cosine function between the
initial lr set in the optimizer to 0, after a warmup period during which it increases linearly between 0 and the
initial lr set in the optimizer.
Args:
optimizer ([`~torch.optim.Optimizer`]):
The optimizer for which to schedule the learning rate.
num_warmup_steps (`int`):
The number of steps for the warmup phase.
num_training_steps (`int`):
The total number of training steps.
num_cycles (`float`, *optional*, defaults to 0.5):
The number of waves in the cosine schedule (the defaults is to just decrease from the max value to 0
following a half-cosine).
last_epoch (`int`, *optional*, defaults to -1):
The index of the last epoch when resuming training.
Return:
`torch.optim.lr_scheduler.LambdaLR` with the appropriate schedule.
"""
lr_lambda = partial(
_get_cosine_schedule_with_quadratic_warmup_lr_lambda,
num_warmup_steps=num_warmup_steps,
num_training_steps=num_training_steps,
num_cycles=num_cycles,
)
return LambdaLR(optimizer, lr_lambda, last_epoch)
def _get_cosine_schedule_with_min_lr_lambda(
current_step: int,
*,
num_warmup_steps: int,
num_training_steps: int,
min_lr_ratio: float,
):
# Warm up
if current_step < num_warmup_steps:
return float(current_step) / float(max(1, num_warmup_steps))
# Cosine learning rate decay
progress = float(current_step - num_warmup_steps) / float(
max(1, num_training_steps - num_warmup_steps)
)
scaling = 0.5 * (1.0 + math.cos(math.pi * progress))
return (1 - min_lr_ratio) * scaling + min_lr_ratio
def get_cosine_schedule_with_min_lr(
optimizer: Optimizer,
num_warmup_steps: int,
num_training_steps: int,
min_lr_ratio: float = 0.0,
):
"""
Create a learning rate schedule which has:
- linear warmup from 0 -> `max_lr` over `num_warmup_steps`
- cosine learning rate annealing from `max_lr` -> `min_lr` over `num_training_steps`
"""
lr_lambda = partial(
_get_cosine_schedule_with_min_lr_lambda,
num_warmup_steps=num_warmup_steps,
num_training_steps=num_training_steps,
min_lr_ratio=min_lr_ratio,
)
return LambdaLR(optimizer, lr_lambda)
def _get_cosine_schedule_with_warmup_decay_constant_lr_lambda(
current_step: int,
*,
num_warmup_steps: int,
num_training_steps: int,
constant_lr_ratio: float,
min_lr_ratio: float,
num_cycles: float,
):
if current_step < num_warmup_steps:
return float(current_step) / float(max(1, num_warmup_steps))
num_constant_steps = int(num_training_steps * constant_lr_ratio)
current_step = min(current_step, num_constant_steps)
progress = float(current_step - num_warmup_steps) / float(
max(1, num_constant_steps - num_warmup_steps)
)
return (
max(
0,
(1 - min_lr_ratio)
* 0.5
* (1.0 + math.cos(math.pi * float(num_cycles) * 2.0 * progress)),
)
+ min_lr_ratio
)
def get_cosine_schedule_with_warmup_decay_constant(
optimizer: Optimizer,
num_warmup_steps: int,
num_training_steps: int,
constant_lr_ratio: float,
min_lr_ratio: float,
num_cycles: float = 0.5,
last_epoch: int = -1,
):
"""
Implementation of Continual Pre-Training of Large Language Models: How to (re)warm your model? (https://arxiv.org/pdf/2308.04014.pdf)
Create a schedule with a learning rate that decreases following the values of the cosine function between the
initial lr set in the optimizer to min_lr_ratio until num_training_steps * constant_lr_ratio, after constant_rate returns constant value of min_rate
, after a warmup period during which it increases linearly between 0 and the initial lr set in the optimizer.
Args:
optimizer ([`~torch.optim.Optimizer`]):
The optimizer for which to schedule the learning rate.
num_warmup_steps (`int`):
The number of steps for the warmup phase.
num_training_steps (`int`):
The total number of training steps.
constant_lr_ratio: (`float`):
The ratio of num_training_steps to decrease by cosine function.
min_lr_ratio: (`float):
The ratio of maximum learning rate for cosine function to decay to minimum learning rate.
num_cycles (`float`, *optional*, defaults to 0.5):
The number of waves in the cosine schedule (the defaults is to just decrease from the max value to 0
following a half-cosine).
last_epoch (`int`, *optional*, defaults to -1):
The index of the last epoch when resuming training.
Return:
`torch.optim.lr_scheduler.LambdaLR` with the appropriate schedule.
"""
lr_lambda = partial(
_get_cosine_schedule_with_warmup_decay_constant_lr_lambda,
num_warmup_steps=num_warmup_steps,
num_training_steps=num_training_steps,
constant_lr_ratio=constant_lr_ratio,
min_lr_ratio=min_lr_ratio,
num_cycles=num_cycles,
)
return LambdaLR(optimizer, lr_lambda, last_epoch)