|
import math |
|
import os |
|
import signal |
|
import sys |
|
from pathlib import Path |
|
|
|
import bitsandbytes as bnb |
|
import fire |
|
import torch |
|
import transformers |
|
import yaml |
|
from attrdict import AttrDict |
|
from datasets import load_dataset, IterableDataset, Dataset |
|
from peft import ( |
|
LoraConfig, |
|
get_peft_model, |
|
prepare_model_for_int8_training, get_peft_model_state_dict, |
|
) |
|
from torch import nn |
|
from transformers import AutoModelForCausalLM, AutoTokenizer |
|
|
|
|
|
from transformers.trainer_pt_utils import get_parameter_names |
|
|
|
project_root = os.path.abspath(os.path.join(os.path.dirname(__file__), '..')) |
|
src_dir = os.path.join(project_root, 'src') |
|
sys.path.insert(0, src_dir) |
|
|
|
from axolotl.datasets import TokenizedPromptDataset, ConstantLengthDataset |
|
from axolotl.prompt_tokenizers import AlpacaPromptTokenizingStrategy, ShareGPTPromptTokenizingStrategy, \ |
|
LLAMA_DEFAULT_PAD_TOKEN, GPTeacherPromptTokenizingStrategy |
|
from axolotl.prompters import AlpacaPrompter, GPTeacherPrompter, ShareGPTPrompter |
|
|
|
def setup_wandb_env_vars(cfg): |
|
if len(cfg.wandb_project) > 0: |
|
os.environ["WANDB_PROJECT"] = cfg.wandb_project |
|
cfg.use_wandb = True |
|
if cfg.wandb_watch and len(cfg.wandb_watch) > 0: |
|
os.environ["WANDB_WATCH"] = cfg.wandb_watch |
|
if cfg.wandb_log_model and len(cfg.wandb_log_model) > 0: |
|
os.environ["WANDB_LOG_MODEL"] = cfg.wandb_log_model |
|
|
|
|
|
def load_model(base_model, model_type, tokenizer_type, cfg, adapter="lora"): |
|
if adapter != "lora": |
|
raise NotImplementedError(f"{adapter} peft adapter not available") |
|
try: |
|
model = getattr(transformers, model_type).from_pretrained( |
|
base_model, |
|
load_in_8bit=cfg.load_in_8bit, |
|
torch_dtype=torch.float16 if cfg.load_in_8bit else torch.float32, |
|
device_map=cfg.device_map, |
|
) |
|
except: |
|
model = AutoModelForCausalLM.from_pretrained( |
|
base_model, |
|
load_in_8bit=cfg.load_in_8bit, |
|
torch_dtype=torch.float16 if cfg.load_in_8bit else torch.float32, |
|
device_map=cfg.device_map, |
|
) |
|
|
|
try: |
|
tokenizer = getattr(transformers, tokenizer_type).from_pretrained(model) |
|
except: |
|
tokenizer = AutoTokenizer.from_pretrained(base_model) |
|
|
|
if tokenizer.__class__.__name__ == "LlamaTokenizer": |
|
tokenizer.pad_token = LLAMA_DEFAULT_PAD_TOKEN |
|
|
|
if tokenizer.__class__.__name__ == "GPTNeoXTokenizerFast": |
|
tokenizer.add_special_tokens({'pad_token': '[PAD]'}) |
|
os.environ["TOKENIZERS_PARALLELISM"] = "false" |
|
|
|
if cfg.load_in_8bit: |
|
model = prepare_model_for_int8_training(model) |
|
|
|
lora_config = LoraConfig( |
|
r=cfg.lora_r, |
|
lora_alpha=cfg.lora_alpha, |
|
target_modules=cfg.lora_target_modules, |
|
lora_dropout=cfg.lora_dropout, |
|
fan_in_fan_out=cfg.lora_fan_in_fan_out, |
|
bias="none", |
|
task_type="CAUSAL_LM", |
|
) |
|
model = get_peft_model(model, lora_config) |
|
if cfg.ddp: |
|
model.to(f"cuda:{cfg.local_rank}") |
|
|
|
|
|
|
|
model.print_trainable_parameters() |
|
return model, tokenizer, lora_config |
|
|
|
|
|
def train( |
|
config: Path = Path('configs/pythia_1_2B_alpaca.yml'), |
|
**kwargs, |
|
): |
|
|
|
with open(config, 'r') as f: |
|
cfg: AttrDict = AttrDict(yaml.load(f, Loader=yaml.Loader)) |
|
|
|
|
|
for k, v in enumerate(kwargs): |
|
if k in cfg: |
|
cfg.k = v |
|
|
|
|
|
cfg.gradient_accumulation_steps = cfg.batch_size // cfg.micro_batch_size |
|
cfg.device_map = "auto" |
|
cfg.world_size = int(os.environ.get("WORLD_SIZE", 1)) |
|
cfg.local_rank = int(os.environ.get("LOCAL_RANK", 0)) |
|
cfg.ddp = cfg.world_size != 1 |
|
if cfg.ddp: |
|
cfg.device_map = {"": int(os.environ.get("LOCAL_RANK", 0))} |
|
cfg.gradient_accumulation_steps = cfg.gradient_accumulation_steps // cfg.world_size |
|
setup_wandb_env_vars(cfg) |
|
|
|
|
|
model, tokenizer, lora_config = load_model(cfg.base_model, cfg.model_type, cfg.tokenizer_type, cfg, adapter=cfg.adapter) |
|
datasets = [] |
|
for d in cfg.datasets: |
|
ds: IterableDataset = load_dataset("json", data_files=d.path, streaming=True, split=None) |
|
if d.type == "alpaca": |
|
ds_strategy = AlpacaPromptTokenizingStrategy(AlpacaPrompter(), tokenizer, cfg.train_on_inputs, cfg.sequence_len) |
|
ds_wrapper = TokenizedPromptDataset(ds_strategy, ds["train"]) |
|
datasets.append(ds_wrapper) |
|
elif d.type == "gpteacher": |
|
ds_strategy = GPTeacherPromptTokenizingStrategy(GPTeacherPrompter(), tokenizer, cfg.train_on_inputs, cfg.sequence_len) |
|
ds_wrapper = TokenizedPromptDataset(ds_strategy, ds["train"]) |
|
datasets.append(ds_wrapper) |
|
elif d.type == "sharegpt": |
|
ds_strategy = ShareGPTPromptTokenizingStrategy(ShareGPTPrompter(), tokenizer, cfg.train_on_inputs, cfg.sequence_len) |
|
ds_wrapper = TokenizedPromptDataset(ds_strategy, ds["train"]) |
|
datasets.append(ds_wrapper) |
|
constant_len_dataset = ConstantLengthDataset(tokenizer, datasets, seq_length=cfg.sequence_len) |
|
constant_len_dataset = Dataset.from_list([_ for _ in constant_len_dataset]).train_test_split( |
|
test_size=cfg.val_set_size, shuffle=True, seed=42 |
|
) |
|
|
|
print(constant_len_dataset) |
|
train_dataset = constant_len_dataset["train"] |
|
eval_dataset = constant_len_dataset["test"] |
|
|
|
total_num_steps = int(math.ceil(len(train_dataset) * cfg.num_epochs / cfg.batch_size)) |
|
warmup_steps = min(int(0.03 * total_num_steps), 100) |
|
logging_steps = min(int(0.005 * total_num_steps), 10) |
|
save_steps = eval_steps = min(int(0.05 * total_num_steps), 200) |
|
|
|
training_args = transformers.TrainingArguments( |
|
per_device_train_batch_size=cfg.micro_batch_size, |
|
gradient_accumulation_steps=cfg.gradient_accumulation_steps, |
|
warmup_steps=warmup_steps, |
|
num_train_epochs=cfg.num_epochs, |
|
learning_rate=cfg.learning_rate, |
|
bf16=cfg.bf16, |
|
tf32=cfg.tf32, |
|
logging_steps=logging_steps, |
|
evaluation_strategy="steps" if cfg.val_set_size > 0 else "no", |
|
save_strategy="steps", |
|
eval_steps=eval_steps if cfg.val_set_size > 0 else None, |
|
save_steps=save_steps, |
|
output_dir=cfg.output_dir, |
|
save_total_limit=3, |
|
load_best_model_at_end=True if cfg.val_set_size > 0 else False, |
|
ddp_find_unused_parameters=False if cfg.ddp else None, |
|
group_by_length=cfg.group_by_length, |
|
report_to="wandb" if cfg.use_wandb else None, |
|
run_name=cfg.wandb_run_name if cfg.use_wandb else None, |
|
) |
|
|
|
decay_parameters = get_parameter_names(model, [nn.LayerNorm]) |
|
decay_parameters = [name for name in decay_parameters if "bias" not in name] |
|
optimizer_grouped_parameters = [ |
|
{ |
|
"params": [p for n, p in model.named_parameters() if n in decay_parameters], |
|
"weight_decay": training_args.weight_decay, |
|
}, |
|
{ |
|
"params": [p for n, p in model.named_parameters() if n not in decay_parameters], |
|
"weight_decay": 0.0, |
|
}, |
|
] |
|
|
|
adam_bnb_optim = bnb.optim.Adam8bit( |
|
optimizer_grouped_parameters, |
|
betas=(training_args.adam_beta1, training_args.adam_beta2), |
|
eps=training_args.adam_epsilon, |
|
lr=training_args.learning_rate, |
|
) |
|
|
|
lr_scheduler = transformers.get_cosine_schedule_with_warmup( |
|
adam_bnb_optim, |
|
training_args.warmup_steps, |
|
total_num_steps, |
|
) |
|
|
|
trainer = transformers.Trainer( |
|
model=model, |
|
train_dataset=train_dataset, |
|
eval_dataset=eval_dataset, |
|
args=training_args, |
|
optimizers=(adam_bnb_optim, lr_scheduler), |
|
data_collator=transformers.DataCollatorForSeq2Seq( |
|
tokenizer, pad_to_multiple_of=8, return_tensors="pt", padding=True |
|
), |
|
) |
|
model.config.use_cache = False |
|
|
|
old_state_dict = model.state_dict |
|
model.state_dict = ( |
|
lambda self, *_, **__: get_peft_model_state_dict( |
|
self, old_state_dict() |
|
) |
|
).__get__(model, type(model)) |
|
|
|
if torch.__version__ >= "2" and sys.platform != "win32": |
|
model = torch.compile(model) |
|
|
|
signal.signal(signal.SIGINT, lambda signal, frame: ( |
|
model.save_pretrained(cfg.output_dir), |
|
exit(0) |
|
)) |
|
|
|
|
|
lora_config.save_pretrained(cfg.output_dir) |
|
trainer.train(resume_from_checkpoint=cfg.resume_from_checkpoint) |
|
|
|
model.save_pretrained(cfg.output_dir) |
|
|
|
if __name__ == "__main__": |
|
fire.Fire(train) |
|
|