|
# Axolotl |
|
|
|
Axolotl is a tool designed to streamline the fine-tuning of various AI models, offering support for multiple configurations and architectures. |
|
|
|
Features: |
|
- Train various Huggingface models such as llama, pythia, falcon, mpt |
|
- Supports fullfinetune, lora, qlora, relora, and gptq |
|
- Customize configurations using a simple yaml file or CLI overwrite |
|
- Load different dataset formats, use custom formats, or bring your own tokenized datasets |
|
- Integrated with xformer, flash attention, rope scaling, and multipacking |
|
- Works with single GPU or multiple GPUs via FSDP or Deepspeed |
|
- Easily run with Docker locally or on the cloud |
|
- Log results and optionally checkpoints to wandb |
|
- And more! |
|
|
|
|
|
<table> |
|
<tr> |
|
<td> |
|
|
|
## Table of Contents |
|
- [Introduction](#axolotl) |
|
- [Supported Features](#axolotl-supports) |
|
- [Quickstart](#quickstart-) |
|
- [Installation](#installation) |
|
- [Docker Installation](#environment) |
|
- [Conda/Pip venv Installation](#condapip-venv) |
|
- [LambdaLabs Installation](#lambdalabs) |
|
- [Dataset](#dataset) |
|
- [How to Add Custom Prompts](#how-to-add-custom-prompts) |
|
- [How to Use Custom Pretokenized Dataset](#how-to-use-your-custom-pretokenized-dataset) |
|
- [Config](#config) |
|
- [Train](#train) |
|
- [Training w/ Deepspeed](#training-with-deepspeed) |
|
- [Inference](#inference) |
|
- [Merge LORA to Base](#merge-lora-to-base) |
|
- [Common Errors](#common-errors-) |
|
- [Need Help?](#need-help-) |
|
- [Badge](#badge-) |
|
- [Community Showcase](#community-showcase) |
|
- [Contributing](#contributing-) |
|
|
|
</td> |
|
<td> |
|
|
|
<div align="center"> |
|
<img src="image/axolotl.png" alt="axolotl" width="160"> |
|
<div> |
|
<p> |
|
<b>Axolotl provides a unified repository for fine-tuning <br />a variety of AI models with ease</b> |
|
</p> |
|
<p> |
|
Go ahead and axolotl questions!! |
|
</p> |
|
<img src="https://github.com/OpenAccess-AI-Collective/axolotl/actions/workflows/pre-commit.yml/badge.svg?branch=main" alt="pre-commit"> |
|
<img alt="PyTest Status" src="https://github.com/OpenAccess-AI-Collective/axolotl/actions/workflows/tests.yml/badge.svg?branch=main"> |
|
</div> |
|
</div> |
|
|
|
</td> |
|
</tr> |
|
</table> |
|
|
|
## Axolotl supports |
|
|
|
| | fp16/fp32 | lora | qlora | gptq | gptq w/flash attn | flash attn | xformers attn | |
|
|----------|:----------|:-----|-------|------|-------------------|------------|--------------| |
|
| llama | β
| β
| β
| β
| β
| β
| β
| |
|
| Pythia | β
| β
| β
| β | β | β | β | |
|
| cerebras | β
| β
| β
| β | β | β | β | |
|
| btlm | β
| β
| β
| β | β | β | β | |
|
| mpt | β
| β | β | β | β | β | β | |
|
| falcon | β
| β
| β
| β | β | β | β | |
|
| gpt-j | β
| β
| β
| β | β | β | β | |
|
| XGen | β
| β | β
| β | β | β | β
| |
|
| phi | β
| β
| β
| β | β | β | β | |
|
|
|
|
|
## Quickstart β‘ |
|
|
|
Get started with Axolotl in just a few steps! This quickstart guide will walk you through setting up and running a basic fine-tuning task. |
|
|
|
**Requirements**: Python >=3.9 and Pytorch >=2.0. |
|
|
|
```bash |
|
git clone https://github.com/OpenAccess-AI-Collective/axolotl |
|
cd axolotl |
|
|
|
pip3 install packaging |
|
pip3 install -e '.[flash-attn,deepspeed]' |
|
pip3 install -U git+https://github.com/huggingface/peft.git |
|
|
|
# finetune lora |
|
accelerate launch -m axolotl.cli.train examples/openllama-3b/lora.yml |
|
|
|
# inference |
|
accelerate launch -m axolotl.cli.inference examples/openllama-3b/lora.yml \ |
|
--lora_model_dir="./lora-out" |
|
``` |
|
|
|
## Installation |
|
|
|
### Environment |
|
|
|
- Docker |
|
```bash |
|
docker run --gpus '"all"' --rm -it winglian/axolotl:main-py3.10-cu118-2.0.1 |
|
``` |
|
- `winglian/axolotl-runpod:main-latest`: for runpod or use this [direct link](https://runpod.io/gsc?template=v2ickqhz9s&ref=6i7fkpdz) |
|
|
|
Or run on the current files for development: |
|
|
|
```sh |
|
docker compose up -d |
|
``` |
|
|
|
- Conda/Pip venv |
|
1. Install python >=**3.9** |
|
|
|
2. Install pytorch stable https://pytorch.org/get-started/locally/ |
|
|
|
3. Install axolotl along with python dependencies |
|
```bash |
|
pip3 install packaging |
|
pip3 install -e '.[flash-attn,deepspeed]' |
|
``` |
|
|
|
- LambdaLabs |
|
<details> |
|
|
|
<summary>Click to Expand</summary> |
|
|
|
1. Install python |
|
```bash |
|
sudo apt update |
|
sudo apt install -y python3.9 |
|
|
|
sudo update-alternatives --install /usr/bin/python python /usr/bin/python3.9 1 |
|
sudo update-alternatives --config python # pick 3.9 if given option |
|
python -V # should be 3.9 |
|
|
|
``` |
|
|
|
2. Install pip |
|
```bash |
|
wget https://bootstrap.pypa.io/get-pip.py |
|
python get-pip.py |
|
``` |
|
|
|
3. Install torch |
|
```bash |
|
pip3 install -U torch --index-url https://download.pytorch.org/whl/cu118 |
|
``` |
|
|
|
4. Axolotl |
|
```bash |
|
git clone https://github.com/OpenAccess-AI-Collective/axolotl |
|
cd axolotl |
|
|
|
pip3 install packaging |
|
pip3 install -e '.[flash-attn,deepspeed]' |
|
pip3 install protobuf==3.20.3 |
|
pip3 install -U --ignore-installed requests Pillow psutil scipy |
|
``` |
|
|
|
5. Set path |
|
```bash |
|
export LD_LIBRARY_PATH=/usr/lib/x86_64-linux-gnu:$LD_LIBRARY_PATH |
|
``` |
|
</details> |
|
|
|
- Windows: Please use WSL or Docker! |
|
|
|
### Dataset |
|
|
|
Axolotl supports a variety of dataset formats. Below are some of the formats you can use. |
|
Have dataset(s) in one of the following format (JSONL recommended): |
|
|
|
- `alpaca`: instruction; input(optional) |
|
```json |
|
{"instruction": "...", "input": "...", "output": "..."} |
|
``` |
|
- `sharegpt`: conversations where `from` is `human`/`gpt` |
|
```json |
|
{"conversations": [{"from": "...", "value": "..."}]} |
|
``` |
|
- `completion`: raw corpus |
|
```json |
|
{"text": "..."} |
|
``` |
|
|
|
<details> |
|
|
|
<summary>See other formats</summary> |
|
|
|
- `jeopardy`: question and answer |
|
```json |
|
{"question": "...", "category": "...", "answer": "..."} |
|
``` |
|
- `oasst`: instruction |
|
```json |
|
{"INSTRUCTION": "...", "RESPONSE": "..."} |
|
``` |
|
- `gpteacher`: instruction; input(optional) |
|
```json |
|
{"instruction": "...", "input": "...", "response": "..."} |
|
``` |
|
- `reflection`: instruction with reflect; input(optional) |
|
```json |
|
{"instruction": "...", "input": "...", "output": "...", "reflection": "...", "corrected": "..."} |
|
``` |
|
- `explainchoice`: question, choices, (solution OR explanation) |
|
```json |
|
{"question": "...", "choices": ["..."], "solution": "...", "explanation": "..."} |
|
``` |
|
- `concisechoice`: question, choices, (solution OR explanation) |
|
```json |
|
{"question": "...", "choices": ["..."], "solution": "...", "explanation": "..."} |
|
``` |
|
- `summarizetldr`: article and summary |
|
```json |
|
{"article": "...", "summary": "..."} |
|
``` |
|
- `alpaca_chat`: basic instruct for alpaca chat |
|
```json |
|
{"instruction": "...", "input": "...", "response": "..."} |
|
``` |
|
- `alpaca_chat.load_qa`: question and answer for alpaca chat |
|
```json |
|
{"question": "...", "answer": "..."} |
|
``` |
|
- `alpaca_chat.load_concise`: question and answer for alpaca chat, for concise answers |
|
```json |
|
{"instruction": "...", "input": "...", "response": "..."} |
|
``` |
|
- `alpaca_chat.load_camel_ai`: question and answer for alpaca chat, for load_camel_ai |
|
```json |
|
{"message_1": "...", "message_2": "..."} |
|
``` |
|
- `alpaca_w_system.load_open_orca`: support for open orca datasets with included system prompts, instruct |
|
```json |
|
{"system_prompt": "...", "question": "...", "response": "..."} |
|
``` |
|
- `context_qa`: in context question answering from an article |
|
```json |
|
{"article": "...", "question": "...", "answer": "..."} |
|
``` |
|
- `context_qa.load_404`: in context question answering from an article, with default response for no answer from context |
|
```json |
|
{"article": "...", "unanswerable_question": "..."} |
|
``` |
|
- `creative_acr.load_answer`: instruction and revision |
|
```json |
|
{"instruction": "...", "revision": "..."} |
|
``` |
|
- `creative_acr.load_critique`: critique |
|
```json |
|
{"scores": "...", "critiques": "...", "instruction": "...", "answer": "..."} |
|
``` |
|
- `creative_acr.load_revise`: critique and revise |
|
```json |
|
{"scores": "...", "critiques": "...", "instruction": "...", "answer": "...", "revision": "..."} |
|
``` |
|
- `pygmalion`: pygmalion |
|
```json |
|
{"conversations": [{"role": "...", "value": "..."}]} |
|
``` |
|
- `metharme`: instruction, adds additional eos tokens |
|
```json |
|
{"prompt": "...", "generation": "..."} |
|
``` |
|
- `sharegpt.load_role`: conversations where `role` is used instead of `from` |
|
```json |
|
{"conversations": [{"role": "...", "value": "..."}]} |
|
``` |
|
- `sharegpt.load_guanaco`: conversations where `from` is `prompter`/`assistant` instead of default sharegpt |
|
```json |
|
{"conversations": [{"from": "...", "value": "..."}]} |
|
``` |
|
- `sharegpt_jokes`: creates a chat where bot is asked to tell a joke, then explain why the joke is funny |
|
```json |
|
{"conversations": [{"title": "...", "text": "...", "explanation": "..."}]} |
|
``` |
|
|
|
</details> |
|
|
|
#### How to add custom prompts |
|
|
|
Using yaml. Example: |
|
```yaml |
|
datasets: |
|
- path: repo |
|
type: |
|
system_prompt: "" |
|
no_input_format: |- |
|
User: {instruction}<|end_of_turn|> |
|
Assistant: |
|
format: |- |
|
User: {instruction} |
|
{input}<|end_of_turn|> |
|
Assistant: |
|
``` |
|
|
|
Using file: |
|
1. Add your method to a file in [prompt_strategies](src/axolotl/prompt_strategies). Please see other files as example. |
|
2. Use your custom file name as the dataset type `<prompt_strategies_file>.load_<load_fn>`. |
|
|
|
#### How to use your custom pretokenized dataset |
|
|
|
- Do not pass a `type:` |
|
- Dataset must contain `input_ids`, `attention_mask`, `labels` in columns |
|
|
|
|
|
### Config |
|
|
|
See [examples](examples) for quick start. It is recommended to duplicate and modify to your needs. The most important options are: |
|
|
|
- model |
|
```yaml |
|
base_model: ./llama-7b-hf # local or huggingface repo |
|
``` |
|
Note: The code will load the right architecture. |
|
|
|
- dataset |
|
```yaml |
|
sequence_len: 2048 # max token length for prompt |
|
|
|
# huggingface repo |
|
datasets: |
|
- path: vicgalle/alpaca-gpt4 |
|
type: alpaca # format from earlier |
|
|
|
# huggingface repo with specific configuration/subset |
|
datasets: |
|
- path: EleutherAI/pile |
|
name: enron_emails |
|
type: completion # format from earlier |
|
field: text # Optional[str] default: text, field to use for completion data |
|
|
|
# huggingface repo with multiple named configurations/subsets |
|
datasets: |
|
- path: bigcode/commitpackft |
|
name: |
|
- ruby |
|
- python |
|
- typescript |
|
type: ... # unimplemented custom format |
|
|
|
# local |
|
datasets: |
|
- path: data.jsonl # or json |
|
ds_type: json # see other options below |
|
type: alpaca |
|
``` |
|
|
|
- loading |
|
```yaml |
|
load_in_4bit: true |
|
load_in_8bit: true |
|
bf16: true # require >=ampere |
|
fp16: true |
|
tf32: true # require >=ampere |
|
bfloat16: true # require >=ampere, use instead of bf16 when you don't want AMP (automatic mixed precision) |
|
float16: true # use instead of fp16 when you don't want AMP |
|
``` |
|
Note: Repo does not do 4-bit quantization. |
|
|
|
- lora |
|
```yaml |
|
adapter: lora # qlora or leave blank for full finetune |
|
lora_r: 8 |
|
lora_alpha: 16 |
|
lora_dropout: 0.05 |
|
lora_target_modules: |
|
- q_proj |
|
- v_proj |
|
``` |
|
|
|
<details> |
|
|
|
<summary>All yaml options</summary> |
|
|
|
```yaml |
|
# this is the huggingface model that contains *.pt, *.safetensors, or *.bin files |
|
# this can also be a relative path to a model on disk |
|
base_model: ./llama-7b-hf |
|
# you can specify an ignore pattern if the model repo contains more than 1 model type (*.pt, etc) |
|
base_model_ignore_patterns: |
|
# if the base_model repo on hf hub doesn't include configuration .json files, |
|
# you can set that here, or leave this empty to default to base_model |
|
base_model_config: ./llama-7b-hf |
|
# you can specify to choose a specific model revision from huggingface hub |
|
model_revision: |
|
# Optional tokenizer configuration override in case you want to use a different tokenizer |
|
# than the one defined in the base model |
|
tokenizer_config: |
|
# If you want to specify the type of model to load, AutoModelForCausalLM is a good choice too |
|
model_type: AutoModelForCausalLM |
|
# Corresponding tokenizer for the model AutoTokenizer is a good choice |
|
tokenizer_type: AutoTokenizer |
|
# Trust remote code for untrusted source |
|
trust_remote_code: |
|
# use_fast option for tokenizer loading from_pretrained, default to True |
|
tokenizer_use_fast: |
|
# Whether to use the legacy tokenizer setting, defaults to True |
|
tokenizer_legacy: |
|
# resize the model embeddings when new tokens are added to multiples of 32 |
|
# this is reported to improve training speed on some models |
|
resize_token_embeddings_to_32x: |
|
|
|
# used to identify if the model is falcon/llama based |
|
is_falcon_derived_model: |
|
is_llama_derived_model: |
|
|
|
# whether you are training a 4-bit GPTQ quantized model |
|
gptq: true |
|
gptq_groupsize: 128 # group size |
|
gptq_model_v1: false # v1 or v2 |
|
|
|
# this will attempt to quantize the model down to 8 bits and use adam 8 bit optimizer |
|
load_in_8bit: true |
|
# use bitsandbytes 4 bit |
|
load_in_4bit: |
|
|
|
# Use CUDA bf16 |
|
bf16: true # bool or 'full' for `bf16_full_eval`. require >=ampere |
|
# Use CUDA fp16 |
|
fp16: true |
|
# Use CUDA tf32 |
|
tf32: true # require >=ampere |
|
|
|
# No AMP (automatic mixed precision) |
|
bfloat16: true # require >=ampere |
|
float16: true |
|
|
|
# a list of one or more datasets to finetune the model with |
|
datasets: |
|
# hf dataset repo | "json" for local dataset, make sure to fill data_files |
|
- path: vicgalle/alpaca-gpt4 |
|
# The type of prompt to use for training. [alpaca, sharegpt, gpteacher, oasst, reflection] |
|
type: alpaca # format | format:<prompt_style> (chat/instruct) | <prompt_strategies>.load_<load_fn> |
|
ds_type: # Optional[str] (json|arrow|parquet|text|csv) defines the datatype when path is a file |
|
data_files: # Optional[str] path to source data files |
|
shards: # Optional[int] number of shards to split data into |
|
name: # Optional[str] name of dataset configuration to load |
|
conversation: # Optional[str] fastchat conversation type, only used with type: sharegpt |
|
|
|
# custom user prompt |
|
- path: repo |
|
type: |
|
# the below are defaults. only set what's needed. |
|
system_prompt: "" |
|
field_system: system |
|
field_instruction: instruction |
|
field_output: input |
|
|
|
# customizable to be single line or multi-line |
|
system_format: "{system}" |
|
# 'format' can include {input} |
|
format: |- |
|
User: {instruction} {input} |
|
Assistant: |
|
# 'no_input_format' cannot include {input} |
|
no_input_format: "{instruction} " |
|
|
|
# for completions datsets, uses the provided field if not `text` |
|
field: |
|
|
|
# axolotl attempts to save the dataset as an arrow after packing the data together so |
|
# subsequent training attempts load faster, relative path |
|
dataset_prepared_path: data/last_run_prepared |
|
# push prepared dataset to hub |
|
push_dataset_to_hub: # repo path |
|
# push checkpoints to hub |
|
hub_model_id: # repo path to push finetuned model |
|
# how to push checkpoints to hub |
|
# https://huggingface.co/docs/transformers/v4.31.0/en/main_classes/trainer#transformers.TrainingArguments.hub_strategy |
|
hub_strategy: |
|
# whether to use hf `use_auth_token` for loading datasets. Useful for fetching private datasets |
|
# required to be true when used in combination with `push_dataset_to_hub` |
|
hf_use_auth_token: # boolean |
|
# How much of the dataset to set aside as evaluation. 1 = 100%, 0.50 = 50%, etc. 0 for no eval. |
|
val_set_size: 0.04 |
|
# Num shards for whole dataset |
|
dataset_shard_num: |
|
# Index of shard to use for whole dataset |
|
dataset_shard_idx: |
|
|
|
# the maximum length of an input to train with, this should typically be less than 2048 |
|
# as most models have a token/context limit of 2048 |
|
sequence_len: 2048 |
|
# pad inputs so each step uses constant sized buffers |
|
# this will reduce memory fragmentation and may prevent OOMs, by re-using memory more efficiently |
|
pad_to_sequence_len: |
|
# max sequence length to concatenate training samples together up to |
|
# inspired by StackLLaMA. see https://huggingface.co/blog/stackllama#supervised-fine-tuning |
|
# FutureWarning: This will soon be DEPRECATED |
|
max_packed_sequence_len: 1024 |
|
# use efficient multi-packing with block diagonal attention and per sequence position_ids. Recommend set to 'true' |
|
sample_packing: |
|
# set to 'false' if getting errors during eval with sample_packing on. |
|
eval_sample_packing: |
|
# you can set these packing optimizations AFTER starting a training at least once. |
|
# The trainer will provide recommended values for these values. |
|
sample_packing_eff_est: |
|
total_num_tokens: |
|
|
|
# if you want to use 'lora' or 'qlora' or leave blank to train all parameters in original model |
|
adapter: lora |
|
# if you already have a lora model trained that you want to load, put that here |
|
# lora hyperparameters |
|
lora_model_dir: |
|
lora_r: 8 |
|
lora_alpha: 16 |
|
lora_dropout: 0.05 |
|
lora_target_modules: |
|
- q_proj |
|
- v_proj |
|
# - k_proj |
|
# - o_proj |
|
# - gate_proj |
|
# - down_proj |
|
# - up_proj |
|
lora_target_linear: # if true, will target all linear layers |
|
lora_modules_to_save: |
|
# - embed_tokens |
|
# - lm_head |
|
lora_out_dir: |
|
lora_fan_in_fan_out: false |
|
|
|
# ReLoRA configuration |
|
# must use either 'lora' or 'qlora' adapter, and does not support fsdp or deepspeed |
|
relora_steps: # number of steps per ReLoRA restart |
|
relora_warmup_steps: # number of per-restart warmup steps |
|
relora_cpu_offload: # true to perform lora weight merges on cpu during restarts, for modest gpu memory savings |
|
|
|
# wandb configuration if you're using it |
|
wandb_mode: # "offline" to save run metadata locally and not sync to the server, "disabled" to turn off wandb |
|
wandb_project: # your wandb project name |
|
wandb_entity: # a wandb Team name if using a Team |
|
wandb_watch: |
|
wandb_run_id: # set the name of your wandb run |
|
wandb_log_model: # "checkpoint" to log model to wandb Artifacts every `save_steps` or "end" to log only at the end of training |
|
|
|
# where to save the finished model to |
|
output_dir: ./completed-model |
|
|
|
# whether to use torch.compile and which backend to use |
|
torch_compile: # bool |
|
torch_compile_backend: # Optional[str] |
|
|
|
# training hyperparameters |
|
gradient_accumulation_steps: 1 |
|
micro_batch_size: 2 |
|
eval_batch_size: 2 |
|
num_epochs: 3 |
|
warmup_steps: 100 |
|
learning_rate: 0.00003 |
|
lr_quadratic_warmup: |
|
logging_steps: |
|
save_strategy: # set to `no` to skip checkpoint saves |
|
save_steps: # leave empty to save at each epoch |
|
eval_steps: # leave empty to eval at each epoch |
|
save_total_limit: # checkpoints saved at a time |
|
max_steps: |
|
|
|
eval_table_size: # approximate number of predictions sent to wandb depending on batch size. Enabled above 0. Default is 0 |
|
eval_table_max_new_tokens: # total number of tokens generated for predictions sent to wandb. Default is 128 |
|
|
|
# save model as safetensors (require safetensors package) |
|
save_safetensors: |
|
|
|
# whether to mask out or include the human's prompt from the training labels |
|
train_on_inputs: false |
|
# group similarly sized data to minimize padding |
|
# may be slower to start, as it must download and sort the entire dataset |
|
# note that training loss may have an oscillating pattern with this enabled |
|
group_by_length: false |
|
|
|
# Whether to use gradient checkpointing https://huggingface.co/docs/transformers/v4.18.0/en/performance#gradient-checkpointing |
|
gradient_checkpointing: false |
|
|
|
# stop training after this many evaluation losses have increased in a row |
|
# https://huggingface.co/transformers/v4.2.2/_modules/transformers/trainer_callback.html#EarlyStoppingCallback |
|
early_stopping_patience: 3 |
|
|
|
# specify a scheduler and kwargs to use with the optimizer |
|
lr_scheduler: # 'one_cycle' | 'log_sweep' | empty for cosine |
|
lr_scheduler_kwargs: |
|
|
|
# for one_cycle optim |
|
lr_div_factor: # learning rate div factor |
|
|
|
# for log_sweep optim |
|
log_sweep_min_lr: |
|
log_sweep_max_lr: |
|
|
|
# specify optimizer |
|
# Valid values are driven by the Transformers OptimizerNames class, see: |
|
# https://github.com/huggingface/transformers/blob/95b374952dc27d8511541d6f5a4e22c9ec11fb24/src/transformers/training_args.py#L134 |
|
# |
|
# Note that not all optimizers may be available in your environment, ex: 'adamw_anyprecision' is part of |
|
# torchdistx, 'adamw_bnb_8bit' is part of bnb.optim.Adam8bit, etc. When in doubt, it is recommended to start with the optimizer used |
|
# in the examples/ for your model and fine-tuning use case. |
|
# |
|
# Valid values for 'optimizer' include: |
|
# - adamw_hf |
|
# - adamw_torch |
|
# - adamw_torch_fused |
|
# - adamw_torch_xla |
|
# - adamw_apex_fused |
|
# - adafactor |
|
# - adamw_anyprecision |
|
# - sgd |
|
# - adagrad |
|
# - adamw_bnb_8bit |
|
# - lion_8bit |
|
# - lion_32bit |
|
# - paged_adamw_32bit |
|
# - paged_adamw_8bit |
|
# - paged_lion_32bit |
|
# - paged_lion_8bit |
|
optimizer: |
|
# specify weight decay |
|
weight_decay: |
|
# adamw hyperparams |
|
adam_beta1: |
|
adam_beta2: |
|
adam_epsilon: |
|
# Gradient clipping max norm |
|
max_grad_norm: |
|
|
|
# whether to bettertransformers |
|
flash_optimum: |
|
# whether to use xformers attention patch https://github.com/facebookresearch/xformers: |
|
xformers_attention: |
|
# whether to use flash attention patch https://github.com/Dao-AILab/flash-attention: |
|
flash_attention: |
|
flash_attn_cross_entropy: # Whether to use flash-attention cross entropy implementation - advanced use only |
|
flash_attn_rms_norm: # Whether to use flash-attention rms norm implementation - advanced use only |
|
# whether to use scaled-dot-product attention |
|
# https://pytorch.org/docs/stable/generated/torch.nn.functional.scaled_dot_product_attention.html |
|
sdp_attention: |
|
# Landmark attention (only llama) |
|
landmark_attention: |
|
# xpos RoPE see https://github.com/kaiokendev/cutoff-len-is-context-len/blob/main/util/xpos_rope_llama_monkey_patch.py |
|
# llama only |
|
xpos_rope: |
|
# RoPE Scaling https://github.com/huggingface/transformers/pull/24653 |
|
rope_scaling: |
|
type: # linear | dynamic |
|
factor: # float |
|
|
|
# resume from a specific checkpoint dir |
|
resume_from_checkpoint: |
|
# if resume_from_checkpoint isn't set and you simply want it to start where it left off |
|
# be careful with this being turned on between different models |
|
auto_resume_from_checkpoints: false |
|
|
|
# don't mess with this, it's here for accelerate and torchrun |
|
local_rank: |
|
|
|
# add or change special tokens |
|
special_tokens: |
|
# bos_token: "<s>" |
|
# eos_token: "</s>" |
|
# unk_token: "<unk>" |
|
# add extra tokens |
|
tokens: |
|
|
|
# FSDP |
|
fsdp: |
|
fsdp_config: |
|
|
|
# Deepspeed config path |
|
deepspeed: |
|
|
|
# Advanced DDP Arguments |
|
ddp_timeout: |
|
ddp_bucket_cap_mb: |
|
ddp_broadcast_buffers: |
|
|
|
# Path to torch distx for optim 'adamw_anyprecision' |
|
torchdistx_path: |
|
|
|
# Set to HF dataset for type: 'completion' for streaming instead of pre-tokenize |
|
pretraining_dataset: |
|
|
|
# Debug mode |
|
debug: |
|
|
|
# Seed |
|
seed: |
|
|
|
# Allow overwrite yml config using from cli |
|
strict: |
|
``` |
|
|
|
</details> |
|
|
|
### Train |
|
|
|
Run |
|
```bash |
|
accelerate launch -m axolotl.cli.train your_config.yml |
|
``` |
|
|
|
#### Multi-GPU |
|
|
|
You can optionally pre-tokenize dataset with the following before finetuning: |
|
```bash |
|
CUDA_VISIBLE_DEVICES="" accelerate launch -m axolotl.cli.train your_config.yml --prepare_ds_only |
|
``` |
|
|
|
##### Config |
|
|
|
- llama FSDP |
|
```yaml |
|
fsdp: |
|
- full_shard |
|
- auto_wrap |
|
fsdp_config: |
|
fsdp_offload_params: true |
|
fsdp_state_dict_type: FULL_STATE_DICT |
|
fsdp_transformer_layer_cls_to_wrap: LlamaDecoderLayer |
|
``` |
|
|
|
##### Weights & Biases Logging |
|
|
|
- wandb options |
|
```yaml |
|
wandb_mode: |
|
wandb_project: |
|
wandb_entity: |
|
wandb_watch: |
|
wandb_run_id: |
|
wandb_log_model: |
|
``` |
|
|
|
### Training with Deepspeed |
|
|
|
Deepspeed is an optimization suite for multi-gpu systems allowing you to train much larger models than you |
|
might typically be able to fit into your GPU's VRAM. More information about the various optimization types |
|
for deepspeed is available at https://huggingface.co/docs/accelerate/main/en/usage_guides/deepspeed#what-is-integrated |
|
|
|
We provide several default deepspeed JSON configurations for ZeRO stage 1, 2, and 3. |
|
|
|
```shell |
|
accelerate launch -m axolotl.cli.train examples/llama-2/config.py --deepspeed deepspeed/zero1.json |
|
``` |
|
|
|
or |
|
|
|
```yaml |
|
deepspeed: deepspeed/zero1.json |
|
``` |
|
|
|
### Inference |
|
|
|
Pass the appropriate flag to the train command: |
|
|
|
- Pretrained LORA: |
|
```bash |
|
python -m axolotl.cli.inference examples/your_config.yml --lora_model_dir="./lora-output-dir" |
|
``` |
|
- Full weights finetune: |
|
```bash |
|
python -m axolotl.cli.inference examples/your_config.yml --base_model="./completed-model" |
|
``` |
|
- Full weights finetune w/ a prompt from a text file: |
|
```bash |
|
cat /tmp/prompt.txt | python -m axolotl.cli.inference examples/your_config.yml \ |
|
--base_model="./completed-model" --prompter=None --load_in_8bit=True |
|
``` |
|
|
|
### Merge LORA to base |
|
|
|
Add below flag to train command above |
|
|
|
```bash |
|
python3 -m axolotl.cli.merge_lora examples/your_config.yml --lora_model_dir="./completed-model" --load_in_8bit=False --load_in_4bit=False |
|
``` |
|
|
|
If you run out of CUDA memory, you can try to merge in system RAM with |
|
|
|
```bash |
|
CUDA_VISIBLE_DEVICES="" python3 -m axolotl.cli.merge_lora ... |
|
``` |
|
|
|
## Common Errors π§° |
|
|
|
> If you encounter a 'Cuda out of memory' error, it means your GPU ran out of memory during the training process. Here's how to resolve it: |
|
|
|
Please reduce any below |
|
- `micro_batch_size` |
|
- `eval_batch_size` |
|
- `gradient_accumulation_steps` |
|
- `sequence_len` |
|
|
|
> `failed (exitcode: -9)` |
|
|
|
Usually means your system has run out of system memory. |
|
Similarly, you should consider reducing the same settings as when you run out of VRAM. |
|
Additionally, look into upgrading your system RAM which should be simpler than GPU upgrades. |
|
|
|
> RuntimeError: expected scalar type Float but found Half |
|
|
|
Try set `fp16: true` |
|
|
|
> NotImplementedError: No operator found for `memory_efficient_attention_forward` ... |
|
|
|
Try to turn off xformers. |
|
|
|
> accelerate config missing |
|
|
|
It's safe to ignore it. |
|
|
|
> NCCL Timeouts during training |
|
|
|
See the [NCCL](docs/nccl.md) guide. |
|
|
|
## Need help? πβοΈ |
|
|
|
Join our [Discord server](https://discord.gg/HhrNrHJPRb) where we can help you |
|
|
|
## Badge β€π·οΈ |
|
|
|
Building something cool with Axolotl? Consider adding a badge to your model card. |
|
|
|
```markdown |
|
[<img src="https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/OpenAccess-AI-Collective/axolotl) |
|
``` |
|
|
|
[<img src="https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/OpenAccess-AI-Collective/axolotl) |
|
|
|
## Community Showcase |
|
|
|
Check out some of the projects and models that have been built using Axolotl! Have a model you'd like to add to our Community Showcase? Open a PR with your model. |
|
|
|
Open Access AI Collective |
|
- [Minotaur 13b](https://huggingface.co/openaccess-ai-collective/minotaur-13b) |
|
- [Manticore 13b](https://huggingface.co/openaccess-ai-collective/manticore-13b) |
|
- [Hippogriff 30b](https://huggingface.co/openaccess-ai-collective/hippogriff-30b-chat) |
|
|
|
PocketDoc Labs |
|
- [Dan's PersonalityEngine 13b LoRA](https://huggingface.co/PocketDoc/Dans-PersonalityEngine-13b-LoRA) |
|
|
|
## Contributing π€ |
|
|
|
Please read the [contributing guide](./.github/CONTRIBUTING.md) |
|
|
|
Bugs? Please check the [open issues](https://github.com/OpenAccess-AI-Collective/axolotl/issues/bug) else create a new Issue. |
|
|
|
PRs are **greatly welcome**! |
|
|
|
Please run below to setup env |
|
```bash |
|
pip3 install -r requirements-dev.txt -r requirements-tests.txt |
|
pre-commit install |
|
|
|
# test |
|
pytest tests/ |
|
``` |
|
|