Spaces:
Runtime error
Runtime error
from collections import deque | |
import os | |
import cv2 | |
import numpy as np | |
import torch | |
import torch.nn.functional as F | |
from torchsummary import summary | |
from core.mot.general import non_max_suppression_and_inds, non_max_suppression_jde, non_max_suppression, scale_coords | |
from core.mot.torch_utils import intersect_dicts | |
from models.mot.cstrack import Model | |
from mot_online import matching | |
from mot_online.kalman_filter import KalmanFilter | |
from mot_online.log import logger | |
from mot_online.utils import * | |
from mot_online.basetrack import BaseTrack, TrackState | |
class STrack(BaseTrack): | |
shared_kalman = KalmanFilter() | |
def __init__(self, tlwh, score, temp_feat, buffer_size=30): | |
# wait activate | |
self._tlwh = np.asarray(tlwh, dtype=np.float) | |
self.kalman_filter = None | |
self.mean, self.covariance = None, None | |
self.is_activated = False | |
self.score = score | |
self.tracklet_len = 0 | |
self.smooth_feat = None | |
self.update_features(temp_feat) | |
self.features = deque([], maxlen=buffer_size) | |
self.alpha = 0.9 | |
def update_features(self, feat): | |
feat /= np.linalg.norm(feat) | |
self.curr_feat = feat | |
if self.smooth_feat is None: | |
self.smooth_feat = feat | |
else: | |
self.smooth_feat = self.alpha * self.smooth_feat + (1 - self.alpha) * feat | |
self.features.append(feat) | |
self.smooth_feat /= np.linalg.norm(self.smooth_feat) | |
def predict(self): | |
mean_state = self.mean.copy() | |
if self.state != TrackState.Tracked: | |
mean_state[7] = 0 | |
self.mean, self.covariance = self.kalman_filter.predict(mean_state, self.covariance) | |
def multi_predict(stracks): | |
if len(stracks) > 0: | |
multi_mean = np.asarray([st.mean.copy() for st in stracks]) | |
multi_covariance = np.asarray([st.covariance for st in stracks]) | |
for i, st in enumerate(stracks): | |
if st.state != TrackState.Tracked: | |
multi_mean[i][7] = 0 | |
multi_mean, multi_covariance = STrack.shared_kalman.multi_predict(multi_mean, multi_covariance) | |
for i, (mean, cov) in enumerate(zip(multi_mean, multi_covariance)): | |
stracks[i].mean = mean | |
stracks[i].covariance = cov | |
def activate(self, kalman_filter, frame_id): | |
"""Start a new tracklet""" | |
self.kalman_filter = kalman_filter | |
self.track_id = self.next_id() | |
self.mean, self.covariance = self.kalman_filter.initiate(self.tlwh_to_xyah(self._tlwh)) | |
self.tracklet_len = 0 | |
self.state = TrackState.Tracked | |
#self.is_activated = True | |
self.frame_id = frame_id | |
self.start_frame = frame_id | |
def re_activate(self, new_track, frame_id, new_id=False): | |
self.mean, self.covariance = self.kalman_filter.update( | |
self.mean, self.covariance, self.tlwh_to_xyah(new_track.tlwh) | |
) | |
self.update_features(new_track.curr_feat) | |
self.tracklet_len = 0 | |
self.state = TrackState.Tracked | |
self.is_activated = True | |
self.frame_id = frame_id | |
if new_id: | |
self.track_id = self.next_id() | |
def update(self, new_track, frame_id, update_feature=True): | |
""" | |
Update a matched track | |
:type new_track: STrack | |
:type frame_id: int | |
:type update_feature: bool | |
:return: | |
""" | |
self.frame_id = frame_id | |
self.tracklet_len += 1 | |
new_tlwh = new_track.tlwh | |
self.mean, self.covariance = self.kalman_filter.update( | |
self.mean, self.covariance, self.tlwh_to_xyah(new_tlwh)) | |
self.state = TrackState.Tracked | |
self.is_activated = True | |
self.score = new_track.score | |
if update_feature: | |
self.update_features(new_track.curr_feat) | |
# @jit(nopython=True) | |
def tlwh(self): | |
"""Get current position in bounding box format `(top left x, top left y, | |
width, height)`. | |
""" | |
if self.mean is None: | |
return self._tlwh.copy() | |
ret = self.mean[:4].copy() | |
ret[2] *= ret[3] | |
ret[:2] -= ret[2:] / 2 | |
return ret | |
# @jit(nopython=True) | |
def tlbr(self): | |
"""Convert bounding box to format `(min x, min y, max x, max y)`, i.e., | |
`(top left, bottom right)`. | |
""" | |
ret = self.tlwh.copy() | |
ret[2:] += ret[:2] | |
return ret | |
# @jit(nopython=True) | |
def tlwh_to_xyah(tlwh): | |
"""Convert bounding box to format `(center x, center y, aspect ratio, | |
height)`, where the aspect ratio is `width / height`. | |
""" | |
ret = np.asarray(tlwh).copy() | |
ret[:2] += ret[2:] / 2 | |
ret[2] /= ret[3] | |
return ret | |
def to_xyah(self): | |
return self.tlwh_to_xyah(self.tlwh) | |
# @jit(nopython=True) | |
def tlbr_to_tlwh(tlbr): | |
ret = np.asarray(tlbr).copy() | |
ret[2:] -= ret[:2] | |
return ret | |
# @jit(nopython=True) | |
def tlwh_to_tlbr(tlwh): | |
ret = np.asarray(tlwh).copy() | |
ret[2:] += ret[:2] | |
return ret | |
def __repr__(self): | |
return 'OT_{}_({}-{})'.format(self.track_id, self.start_frame, self.end_frame) | |
class JDETracker(object): | |
def __init__(self, opt, frame_rate=30): | |
self.opt = opt | |
if int(opt.gpus[0]) >= 0: | |
opt.device = torch.device('cuda') | |
else: | |
opt.device = torch.device('cpu') | |
print('Creating model...') | |
ckpt = torch.load(opt.weights, map_location=opt.device) # load checkpoint | |
self.model = Model(opt.cfg or ckpt['model'].yaml, ch=3, nc=1).to(opt.device) # create | |
exclude = ['anchor'] if opt.cfg else [] # exclude keys | |
if type(ckpt['model']).__name__ == "OrderedDict": | |
state_dict = ckpt['model'] | |
else: | |
state_dict = ckpt['model'].float().state_dict() # to FP32 | |
state_dict = intersect_dicts(state_dict, self.model.state_dict(), exclude=exclude) # intersect | |
self.model.load_state_dict(state_dict, strict=False) # load | |
self.model.cuda().eval() | |
total_params = sum(p.numel() for p in self.model.parameters()) | |
print(f'{total_params:,} total parameters.') | |
self.tracked_stracks = [] # type: list[STrack] | |
self.lost_stracks = [] # type: list[STrack] | |
self.removed_stracks = [] # type: list[STrack] | |
self.frame_id = 0 | |
self.det_thresh = opt.conf_thres | |
self.buffer_size = int(frame_rate / 30.0 * opt.track_buffer) | |
self.max_time_lost = self.buffer_size | |
self.mean = np.array(opt.mean, dtype=np.float32).reshape(1, 1, 3) | |
self.std = np.array(opt.std, dtype=np.float32).reshape(1, 1, 3) | |
self.kalman_filter = KalmanFilter() | |
self.low_thres = 0.2 | |
self.high_thres = self.opt.conf_thres + 0.1 | |
def update(self, im_blob, img0,seq_num, save_dir): | |
self.frame_id += 1 | |
activated_starcks = [] | |
refind_stracks = [] | |
lost_stracks = [] | |
removed_stracks = [] | |
dets = [] | |
''' Step 1: Network forward, get detections & embeddings''' | |
with torch.no_grad(): | |
output = self.model(im_blob, augment=False) | |
pred, train_out = output[1] | |
pred = pred[pred[:, :, 4] > self.low_thres] | |
detections = [] | |
if len(pred) > 0: | |
dets,x_inds,y_inds = non_max_suppression_and_inds(pred[:,:6].unsqueeze(0), 0.1, self.opt.nms_thres,method='cluster_diou') | |
if len(dets) != 0: | |
scale_coords(self.opt.img_size, dets[:, :4], img0.shape).round() | |
id_feature = output[0][0, y_inds, x_inds, :].cpu().numpy() | |
remain_inds = dets[:, 4] > self.opt.conf_thres | |
inds_low = dets[:, 4] > self.low_thres | |
inds_high = dets[:, 4] < self.opt.conf_thres | |
inds_second = np.logical_and(inds_low, inds_high) | |
dets_second = dets[inds_second] | |
if id_feature.shape[0] == 1: | |
id_feature_second = id_feature | |
else: | |
id_feature_second = id_feature[inds_second] | |
dets = dets[remain_inds] | |
id_feature = id_feature[remain_inds] | |
detections = [STrack(STrack.tlbr_to_tlwh(tlbrs[:4]), tlbrs[4], f, 30) for | |
(tlbrs, f) in zip(dets[:, :5], id_feature)] | |
else: | |
detections = [] | |
dets_second = [] | |
id_feature_second = [] | |
''' Add newly detected tracklets to tracked_stracks''' | |
unconfirmed = [] | |
tracked_stracks = [] # type: list[STrack] | |
for track in self.tracked_stracks: | |
if not track.is_activated: | |
unconfirmed.append(track) | |
else: | |
tracked_stracks.append(track) | |
''' Step 2: First association, with embedding''' | |
strack_pool = joint_stracks(tracked_stracks, self.lost_stracks) | |
# Predict the current location with KF | |
#for strack in strack_pool: | |
#strack.predict() | |
STrack.multi_predict(strack_pool) | |
dists = matching.embedding_distance(strack_pool, detections) | |
dists = matching.fuse_motion(self.kalman_filter, dists, strack_pool, detections) | |
#dists = matching.iou_distance(strack_pool, detections) | |
matches, u_track, u_detection = matching.linear_assignment(dists, thresh=0.4) | |
for itracked, idet in matches: | |
track = strack_pool[itracked] | |
det = detections[idet] | |
if track.state == TrackState.Tracked: | |
track.update(detections[idet], self.frame_id) | |
activated_starcks.append(track) | |
else: | |
track.re_activate(det, self.frame_id, new_id=False) | |
refind_stracks.append(track) | |
# vis | |
track_features, det_features, cost_matrix, cost_matrix_det, cost_matrix_track = [],[],[],[],[] | |
if self.opt.vis_state == 1 and self.frame_id % 20 == 0: | |
if len(dets) != 0: | |
for i in range(0, dets.shape[0]): | |
bbox = dets[i][0:4] | |
cv2.rectangle(img0, (int(bbox[0]), int(bbox[1])),(int(bbox[2]), int(bbox[3])),(0, 255, 0), 2) | |
track_features, det_features, cost_matrix, cost_matrix_det, cost_matrix_track = matching.vis_id_feature_A_distance(strack_pool, detections) | |
vis_feature(self.frame_id,seq_num,img0,track_features, | |
det_features, cost_matrix, cost_matrix_det, cost_matrix_track, max_num=5, out_path=save_dir) | |
''' Step 3: Second association, with IOU''' | |
detections = [detections[i] for i in u_detection] | |
r_tracked_stracks = [strack_pool[i] for i in u_track if strack_pool[i].state == TrackState.Tracked] | |
dists = matching.iou_distance(r_tracked_stracks, detections) | |
matches, u_track, u_detection = matching.linear_assignment(dists, thresh=0.5) | |
for itracked, idet in matches: | |
track = r_tracked_stracks[itracked] | |
det = detections[idet] | |
if track.state == TrackState.Tracked: | |
track.update(det, self.frame_id) | |
activated_starcks.append(track) | |
else: | |
track.re_activate(det, self.frame_id, new_id=False) | |
refind_stracks.append(track) | |
# association the untrack to the low score detections | |
if len(dets_second) > 0: | |
detections_second = [STrack(STrack.tlbr_to_tlwh(tlbrs[:4]), tlbrs[4], f, 30) for | |
(tlbrs, f) in zip(dets_second[:, :5], id_feature_second)] | |
else: | |
detections_second = [] | |
second_tracked_stracks = [r_tracked_stracks[i] for i in u_track if r_tracked_stracks[i].state == TrackState.Tracked] | |
dists = matching.iou_distance(second_tracked_stracks, detections_second) | |
matches, u_track, u_detection_second = matching.linear_assignment(dists, thresh=0.4) | |
for itracked, idet in matches: | |
track = second_tracked_stracks[itracked] | |
det = detections_second[idet] | |
if track.state == TrackState.Tracked: | |
track.update(det, self.frame_id) | |
activated_starcks.append(track) | |
else: | |
track.re_activate(det, self.frame_id, new_id=False) | |
refind_stracks.append(track) | |
for it in u_track: | |
track = second_tracked_stracks[it] | |
if not track.state == TrackState.Lost: | |
track.mark_lost() | |
lost_stracks.append(track) | |
'''Deal with unconfirmed tracks, usually tracks with only one beginning frame''' | |
detections = [detections[i] for i in u_detection] | |
dists = matching.iou_distance(unconfirmed, detections) | |
matches, u_unconfirmed, u_detection = matching.linear_assignment(dists, thresh=0.7) | |
for itracked, idet in matches: | |
unconfirmed[itracked].update(detections[idet], self.frame_id) | |
activated_starcks.append(unconfirmed[itracked]) | |
for it in u_unconfirmed: | |
track = unconfirmed[it] | |
track.mark_removed() | |
removed_stracks.append(track) | |
""" Step 4: Init new stracks""" | |
for inew in u_detection: | |
track = detections[inew] | |
if track.score < self.high_thres: | |
continue | |
track.activate(self.kalman_filter, self.frame_id) | |
activated_starcks.append(track) | |
""" Step 5: Update state""" | |
for track in self.lost_stracks: | |
if self.frame_id - track.end_frame > self.max_time_lost: | |
track.mark_removed() | |
removed_stracks.append(track) | |
# print('Ramained match {} s'.format(t4-t3)) | |
self.tracked_stracks = [t for t in self.tracked_stracks if t.state == TrackState.Tracked] | |
self.tracked_stracks = joint_stracks(self.tracked_stracks, activated_starcks) | |
self.tracked_stracks = joint_stracks(self.tracked_stracks, refind_stracks) | |
self.lost_stracks = sub_stracks(self.lost_stracks, self.tracked_stracks) | |
self.lost_stracks.extend(lost_stracks) | |
self.lost_stracks = sub_stracks(self.lost_stracks, self.removed_stracks) | |
self.removed_stracks.extend(removed_stracks) | |
self.tracked_stracks, self.lost_stracks = remove_duplicate_stracks(self.tracked_stracks, self.lost_stracks) | |
# get scores of lost tracks | |
output_stracks = [track for track in self.tracked_stracks if track.is_activated] | |
logger.debug('===========Frame {}=========='.format(self.frame_id)) | |
logger.debug('Activated: {}'.format([track.track_id for track in activated_starcks])) | |
logger.debug('Refind: {}'.format([track.track_id for track in refind_stracks])) | |
logger.debug('Lost: {}'.format([track.track_id for track in lost_stracks])) | |
logger.debug('Removed: {}'.format([track.track_id for track in removed_stracks])) | |
return output_stracks | |
def joint_stracks(tlista, tlistb): | |
exists = {} | |
res = [] | |
for t in tlista: | |
exists[t.track_id] = 1 | |
res.append(t) | |
for t in tlistb: | |
tid = t.track_id | |
if not exists.get(tid, 0): | |
exists[tid] = 1 | |
res.append(t) | |
return res | |
def sub_stracks(tlista, tlistb): | |
stracks = {} | |
for t in tlista: | |
stracks[t.track_id] = t | |
for t in tlistb: | |
tid = t.track_id | |
if stracks.get(tid, 0): | |
del stracks[tid] | |
return list(stracks.values()) | |
def remove_duplicate_stracks(stracksa, stracksb): | |
pdist = matching.iou_distance(stracksa, stracksb) | |
pairs = np.where(pdist < 0.15) | |
dupa, dupb = list(), list() | |
for p, q in zip(*pairs): | |
timep = stracksa[p].frame_id - stracksa[p].start_frame | |
timeq = stracksb[q].frame_id - stracksb[q].start_frame | |
if timep > timeq: | |
dupb.append(q) | |
else: | |
dupa.append(p) | |
resa = [t for i, t in enumerate(stracksa) if not i in dupa] | |
resb = [t for i, t in enumerate(stracksb) if not i in dupb] | |
return resa, resb | |
def vis_feature(frame_id,seq_num,img,track_features, det_features, cost_matrix, cost_matrix_det, cost_matrix_track,max_num=5, out_path='/home/XX/'): | |
num_zero = ["0000","000","00","0"] | |
img = cv2.resize(img, (778, 435)) | |
if len(det_features) != 0: | |
max_f = det_features.max() | |
min_f = det_features.min() | |
det_features = np.round((det_features - min_f) / (max_f - min_f) * 255) | |
det_features = det_features.astype(np.uint8) | |
d_F_M = [] | |
cutpff_line = [40]*512 | |
for d_f in det_features: | |
for row in range(45): | |
d_F_M += [[40]*3+d_f.tolist()+[40]*3] | |
for row in range(3): | |
d_F_M += [[40]*3+cutpff_line+[40]*3] | |
d_F_M = np.array(d_F_M) | |
d_F_M = d_F_M.astype(np.uint8) | |
det_features_img = cv2.applyColorMap(d_F_M, cv2.COLORMAP_JET) | |
feature_img2 = cv2.resize(det_features_img, (435, 435)) | |
#cv2.putText(feature_img2, "det_features", (5, 20), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 0, 255), 2) | |
else: | |
feature_img2 = np.zeros((435, 435)) | |
feature_img2 = feature_img2.astype(np.uint8) | |
feature_img2 = cv2.applyColorMap(feature_img2, cv2.COLORMAP_JET) | |
#cv2.putText(feature_img2, "det_features", (5, 20), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 0, 255), 2) | |
feature_img = np.concatenate((img, feature_img2), axis=1) | |
if len(cost_matrix_det) != 0 and len(cost_matrix_det[0]) != 0: | |
max_f = cost_matrix_det.max() | |
min_f = cost_matrix_det.min() | |
cost_matrix_det = np.round((cost_matrix_det - min_f) / (max_f - min_f) * 255) | |
d_F_M = [] | |
cutpff_line = [40]*len(cost_matrix_det)*10 | |
for c_m in cost_matrix_det: | |
add = [] | |
for row in range(len(c_m)): | |
add += [255-c_m[row]]*10 | |
for row in range(10): | |
d_F_M += [[40]+add+[40]] | |
d_F_M = np.array(d_F_M) | |
d_F_M = d_F_M.astype(np.uint8) | |
cost_matrix_det_img = cv2.applyColorMap(d_F_M, cv2.COLORMAP_JET) | |
feature_img2 = cv2.resize(cost_matrix_det_img, (435, 435)) | |
#cv2.putText(feature_img2, "cost_matrix_det", (5, 20), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 0, 255), 2) | |
else: | |
feature_img2 = np.zeros((435, 435)) | |
feature_img2 = feature_img2.astype(np.uint8) | |
feature_img2 = cv2.applyColorMap(feature_img2, cv2.COLORMAP_JET) | |
#cv2.putText(feature_img2, "cost_matrix_det", (5, 20), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 0, 255), 2) | |
feature_img = np.concatenate((feature_img, feature_img2), axis=1) | |
if len(track_features) != 0: | |
max_f = track_features.max() | |
min_f = track_features.min() | |
track_features = np.round((track_features - min_f) / (max_f - min_f) * 255) | |
track_features = track_features.astype(np.uint8) | |
d_F_M = [] | |
cutpff_line = [40]*512 | |
for d_f in track_features: | |
for row in range(45): | |
d_F_M += [[40]*3+d_f.tolist()+[40]*3] | |
for row in range(3): | |
d_F_M += [[40]*3+cutpff_line+[40]*3] | |
d_F_M = np.array(d_F_M) | |
d_F_M = d_F_M.astype(np.uint8) | |
track_features_img = cv2.applyColorMap(d_F_M, cv2.COLORMAP_JET) | |
feature_img2 = cv2.resize(track_features_img, (435, 435)) | |
#cv2.putText(feature_img2, "track_features", (5, 20), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 0, 255), 2) | |
else: | |
feature_img2 = np.zeros((435, 435)) | |
feature_img2 = feature_img2.astype(np.uint8) | |
feature_img2 = cv2.applyColorMap(feature_img2, cv2.COLORMAP_JET) | |
#cv2.putText(feature_img2, "track_features", (5, 20), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 0, 255), 2) | |
feature_img = np.concatenate((feature_img, feature_img2), axis=1) | |
if len(cost_matrix_track) != 0 and len(cost_matrix_track[0]) != 0: | |
max_f = cost_matrix_track.max() | |
min_f = cost_matrix_track.min() | |
cost_matrix_track = np.round((cost_matrix_track - min_f) / (max_f - min_f) * 255) | |
d_F_M = [] | |
cutpff_line = [40]*len(cost_matrix_track)*10 | |
for c_m in cost_matrix_track: | |
add = [] | |
for row in range(len(c_m)): | |
add += [255-c_m[row]]*10 | |
for row in range(10): | |
d_F_M += [[40]+add+[40]] | |
d_F_M = np.array(d_F_M) | |
d_F_M = d_F_M.astype(np.uint8) | |
cost_matrix_track_img = cv2.applyColorMap(d_F_M, cv2.COLORMAP_JET) | |
feature_img2 = cv2.resize(cost_matrix_track_img, (435, 435)) | |
#cv2.putText(feature_img2, "cost_matrix_track", (5, 20), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 0, 255), 2) | |
else: | |
feature_img2 = np.zeros((435, 435)) | |
feature_img2 = feature_img2.astype(np.uint8) | |
feature_img2 = cv2.applyColorMap(feature_img2, cv2.COLORMAP_JET) | |
#cv2.putText(feature_img2, "cost_matrix_track", (5, 20), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 0, 255), 2) | |
feature_img = np.concatenate((feature_img, feature_img2), axis=1) | |
if len(cost_matrix) != 0 and len(cost_matrix[0]) != 0: | |
max_f = cost_matrix.max() | |
min_f = cost_matrix.min() | |
cost_matrix = np.round((cost_matrix - min_f) / (max_f - min_f) * 255) | |
d_F_M = [] | |
cutpff_line = [40]*len(cost_matrix[0])*10 | |
for c_m in cost_matrix: | |
add = [] | |
for row in range(len(c_m)): | |
add += [255-c_m[row]]*10 | |
for row in range(10): | |
d_F_M += [[40]+add+[40]] | |
d_F_M = np.array(d_F_M) | |
d_F_M = d_F_M.astype(np.uint8) | |
cost_matrix_img = cv2.applyColorMap(d_F_M, cv2.COLORMAP_JET) | |
feature_img2 = cv2.resize(cost_matrix_img, (435, 435)) | |
#cv2.putText(feature_img2, "cost_matrix", (5, 20), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 0, 255), 2) | |
else: | |
feature_img2 = np.zeros((435, 435)) | |
feature_img2 = feature_img2.astype(np.uint8) | |
feature_img2 = cv2.applyColorMap(feature_img2, cv2.COLORMAP_JET) | |
#cv2.putText(feature_img2, "cost_matrix", (5, 20), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 0, 255), 2) | |
feature_img = np.concatenate((feature_img, feature_img2), axis=1) | |
dst_path = out_path + "/" + seq_num + "_" + num_zero[len(str(frame_id))-1] + str(frame_id) + '.png' | |
cv2.imwrite(dst_path, feature_img) |