EdBianchi commited on
Commit
45c3fe5
1 Parent(s): 3ecc5f6

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +10 -9
app.py CHANGED
@@ -22,11 +22,11 @@ def compute(image):
22
  st.image(image, use_column_width=True)
23
 
24
  with st.container():
25
- st.write("#### Classification Outputs:")
26
  col1, col2, col6 = st.columns(3)
27
- col1.metric(predictions[0]['label'], str(round(predictions[0]['score']*100, 1))+"%")
28
- col2.metric(predictions[1]['label'], str(round(predictions[1]['score']*100, 1))+"%")
29
- col6.metric(predictions[2]['label'], str(round(predictions[2]['score']*100, 1))+"%")
30
  return None
31
 
32
  # INIT
@@ -35,19 +35,20 @@ with st.spinner('Loading the model, this could take some time...'):
35
 
36
  # TITLE
37
  st.write("# Fire in Forest Environments")
38
- st.write("""Wildfires or forest fires are unpredictable catastrophic and destructive events that affect rural areas.
39
- The impact of these events affects both vegetation and wildlife.
40
 
41
- This application showcases the "vit-fire-detection" model, a version of google vit-base-patch16-224-in21k vision transformer fine-tuned for smoke and fire detection. In particular, we can imagine a setup in which webcams, drones, or other recording devices take pictures of a wild environment every t seconds or minutes. The proposed system is then able to classify the current situation as normal, smoke, or fire.
42
  """)
43
- #st.image("./demo.jpg", use_column_width=True)
44
- st.write("#### Upload an image to see the classifier in action")
45
  # INPUT IMAGE
46
  file_name = st.file_uploader("")
47
  if file_name is not None:
48
  image = Image.open(file_name)
49
  compute(image)
50
 
 
51
  demo_img = Image.open("./demo.jpg")
52
  compute(demo_img)
53
 
 
22
  st.image(image, use_column_width=True)
23
 
24
  with st.container():
25
+ st.write("### Classification Outputs:")
26
  col1, col2, col6 = st.columns(3)
27
+ col1.metric(predictions[0]['label'], str(round(predictions[0]['score']*100, 1))+"%", delta = 50)
28
+ col2.metric(predictions[1]['label'], str(round(predictions[1]['score']*100, 1))+"%", delta = 50)
29
+ col6.metric(predictions[2]['label'], str(round(predictions[2]['score']*100, 1))+"%", delta = 50)
30
  return None
31
 
32
  # INIT
 
35
 
36
  # TITLE
37
  st.write("# Fire in Forest Environments")
38
+ st.write("""Wildfires or forest fires are *unpredictable catastrophic and destructive* events that affect *rural areas*.
39
+ The impact of these events affects both *vegetation and wildlife*.
40
 
41
+ This application showcases the *vit-fire-detection* model, a version of google **vit-base-patch16-224-in21k** vision transformer *fine-tuned for smoke and fire detection*. In particular, we can imagine a setup in which webcams, drones, or other recording devices *take pictures of a wild environment every t seconds or minutes*. The proposed system is then able to classify the current situation as *normal, smoke, or fire*.
42
  """)
43
+
44
+ st.write("### Upload an image to see the classifier in action")
45
  # INPUT IMAGE
46
  file_name = st.file_uploader("")
47
  if file_name is not None:
48
  image = Image.open(file_name)
49
  compute(image)
50
 
51
+ # DEMO IMAGE
52
  demo_img = Image.open("./demo.jpg")
53
  compute(demo_img)
54