File size: 33,635 Bytes
a5686cb
ff42e3f
f0fc5f8
71ab0a8
5f9881c
f0fc5f8
 
6d2199d
f0fc5f8
91c4196
 
5f9881c
 
 
 
 
f0fc5f8
 
 
 
 
 
5f9881c
 
 
 
 
 
 
 
 
 
 
f0fc5f8
 
ff42e3f
 
 
6d2199d
ff42e3f
 
f0fc5f8
abfa81d
 
 
ff42e3f
46e3999
 
6d2199d
 
f0fc5f8
7498c33
 
 
 
 
99e2b1f
6d2199d
 
 
91c4196
6d2199d
 
 
 
91c4196
6d2199d
 
 
 
91c4196
6d2199d
a4595fc
ff42e3f
c974ee5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
abfa81d
 
f0fc5f8
5f9881c
f0fc5f8
 
 
 
 
5f9881c
 
 
f0fc5f8
c974ee5
5f9881c
 
 
 
 
 
 
 
 
f0fc5f8
5f9881c
 
 
c974ee5
5f9881c
 
 
 
 
 
 
 
91f77da
3d561c7
 
 
91f77da
5f9881c
 
91f77da
5f9881c
 
 
91f77da
5f9881c
3d561c7
dae4bee
5f9881c
c974ee5
5f9881c
72c5fd8
5f9881c
72c5fd8
5f9881c
3d561c7
5f9881c
 
 
 
 
 
 
3d561c7
5f9881c
 
 
3d561c7
5f9881c
 
 
 
3d561c7
5f9881c
3d561c7
5f9881c
3d561c7
5f9881c
 
 
 
 
 
 
 
 
 
3d561c7
5f9881c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6d2199d
 
 
 
 
 
 
5f9881c
 
6d2199d
 
 
 
 
 
5f9881c
 
 
 
 
 
6d2199d
5f9881c
 
 
 
ff42e3f
 
 
f0fc5f8
5f9881c
 
ff42e3f
 
 
f0fc5f8
 
ff42e3f
 
 
f0fc5f8
ff42e3f
 
 
 
 
 
 
 
f0fc5f8
 
5f9881c
 
f0fc5f8
 
 
46e3999
a5686cb
91c4196
 
 
6d2199d
91c4196
6d2199d
91c4196
 
 
 
12574b1
dc1d7e6
 
fdf1622
 
91c4196
6d2199d
91c4196
6d2199d
 
 
 
 
 
91c4196
 
f0fc5f8
 
 
ff42e3f
 
787d3cb
c974ee5
787d3cb
5f9881c
787d3cb
 
 
f0fc5f8
5f9881c
787d3cb
 
5f9881c
787d3cb
f0fc5f8
 
c974ee5
 
 
 
 
 
 
3c9e1e2
5f9881c
f0fc5f8
 
5f9881c
f0fc5f8
fa9f031
f0fc5f8
 
5f9881c
 
 
 
 
a3bf481
c974ee5
3d561c7
 
 
a3bf481
91f77da
fa9f031
 
 
 
3c9e1e2
 
5f9881c
3c9e1e2
5f9881c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3c9e1e2
5f9881c
 
3c9e1e2
 
 
5f9881c
3c9e1e2
 
 
 
 
 
5f9881c
3c9e1e2
 
 
 
5f9881c
 
 
 
 
 
 
 
3c9e1e2
 
 
 
 
 
 
 
 
 
5f9881c
 
 
3c9e1e2
5f9881c
 
 
 
 
 
3c9e1e2
 
5f9881c
 
 
3c9e1e2
 
 
5f9881c
 
 
3c9e1e2
5f9881c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3c9e1e2
 
 
f0fc5f8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5f9881c
f0fc5f8
 
 
 
 
 
 
 
 
 
 
 
 
4857c80
f0fc5f8
 
 
 
 
 
 
 
 
 
 
5f9881c
f0fc5f8
 
 
 
 
 
 
 
 
 
 
5f9881c
f0fc5f8
 
 
 
 
 
 
 
 
5f9881c
f0fc5f8
 
12574b1
5f9881c
f0fc5f8
 
 
 
 
 
a177bf9
f0fc5f8
ff42e3f
 
 
 
 
 
 
 
 
 
 
 
 
 
78e5850
be5787a
 
 
 
 
 
 
 
 
 
 
 
 
19a9d09
5f9881c
f0fc5f8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5f9881c
f0fc5f8
d271714
 
 
 
 
56102c0
 
dace914
 
 
 
8161832
f655fb1
 
 
5f9881c
f655fb1
5f9881c
 
 
 
 
 
 
 
 
 
 
 
f655fb1
 
bfed8a0
f655fb1
 
787d3cb
 
72c5fd8
f655fb1
 
 
 
 
12574b1
 
 
24b7633
d730458
fa9f031
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
import gradio as gr
import pandas as pd
import numpy as np
import os
import time
from datetime import datetime

from utils import create_user_id

from azure.storage.fileshare import ShareServiceClient


import re
import json


# Langchain
from langchain.embeddings import HuggingFaceEmbeddings
from langchain.schema import AIMessage, HumanMessage
from langchain.callbacks.streaming_stdout import StreamingStdOutCallbackHandler

# ClimateQ&A imports
from climateqa.engine.llm import get_llm
# from climateqa.chains import load_qa_chain_with_docs,load_qa_chain_with_text
# from climateqa.chains import load_reformulation_chain
from climateqa.engine.rag import make_rag_chain
from climateqa.engine.vectorstore import get_pinecone_vectorstore
from climateqa.engine.retriever import ClimateQARetriever
from climateqa.engine.embeddings import get_embeddings_function
from climateqa.engine.prompts import audience_prompts
from climateqa.sample_questions import QUESTIONS
from climateqa.constants import POSSIBLE_REPORTS
from climateqa.utils import get_image_from_azure_blob_storage

# Load environment variables in local mode
try:
    from dotenv import load_dotenv
    load_dotenv()
except Exception as e:
    pass

# Set up Gradio Theme
theme = gr.themes.Base(
    primary_hue="blue",
    secondary_hue="red",
    font=[gr.themes.GoogleFont("Poppins"), "ui-sans-serif", "system-ui", "sans-serif"],
)



init_prompt = ""

system_template = {
    "role": "system",
    "content": init_prompt,
}

account_key = os.environ["BLOB_ACCOUNT_KEY"]
if len(account_key) == 86:
    account_key += "=="

credential = {
    "account_key": account_key,
    "account_name": os.environ["BLOB_ACCOUNT_NAME"],
}

account_url = os.environ["BLOB_ACCOUNT_URL"]
file_share_name = "climategpt"
service = ShareServiceClient(account_url=account_url, credential=credential)
share_client = service.get_share_client(file_share_name)

user_id = create_user_id()



def parse_output_llm_with_sources(output):
    # Split the content into a list of text and "[Doc X]" references
    content_parts = re.split(r'\[(Doc\s?\d+(?:,\s?Doc\s?\d+)*)\]', output)
    parts = []
    for part in content_parts:
        if part.startswith("Doc"):
            subparts = part.split(",")
            subparts = [subpart.lower().replace("doc","").strip() for subpart in subparts]
            subparts = [f"<span class='doc-ref'><sup>{subpart}</sup></span>" for subpart in subparts]
            parts.append("".join(subparts))
        else:
            parts.append(part)
    content_parts = "".join(parts)
    return content_parts



# Create embeddings function and LLM
embeddings_function = get_embeddings_function()

# Create vectorstore and retriever
vectorstore = get_pinecone_vectorstore(embeddings_function)


def make_pairs(lst):
    """from a list of even lenght, make tupple pairs"""
    return [(lst[i], lst[i + 1]) for i in range(0, len(lst), 2)]


def serialize_docs(docs):
    new_docs = []
    for doc in docs:
        new_doc = {}
        new_doc["page_content"] = doc.page_content
        new_doc["metadata"] = doc.metadata
        new_docs.append(new_doc)
    return new_docs


async def chat(query,history,audience,sources,reports):
    """taking a query and a message history, use a pipeline (reformulation, retriever, answering) to yield a tuple of:
    (messages in gradio format, messages in langchain format, source documents)"""

    if audience == "Children":
        audience_prompt = audience_prompts["children"]
    elif audience == "General public":
        audience_prompt = audience_prompts["general"]
    elif audience == "Experts":
        audience_prompt = audience_prompts["experts"]
    else:
        audience_prompt = audience_prompts["experts"]

    # Prepare default values
    if len(sources) == 0:
        sources = ["IPCC"]

    if len(reports) == 0:
        reports = []

    llm = get_llm(max_tokens = 1024,temperature = 0.0)
    retriever = ClimateQARetriever(vectorstore=vectorstore,sources = sources,reports = reports,k_summary = 3,k_total = 10,threshold=0.4)
    rag_chain = make_rag_chain(retriever,llm)

    source_string = ""


    # gradio_format = make_pairs([a.content for a in history]) + [(query, "")]

    # history = history + [(query,"")]

    # print(history)

    # print(gradio_format)

    # # reset memory
    # memory.clear()
    # for message in history:
    #     memory.chat_memory.add_message(message)
    
    inputs = {"query": query,"audience": audience_prompt}
    result = rag_chain.astream_log(inputs)

    reformulated_question_path_id = "/logs/flatten_dict/final_output"
    retriever_path_id = "/logs/Retriever/final_output"
    final_answer_path_id = "/logs/AzureChatOpenAI:2/streamed_output_str/-"

    docs_html = ""
    output_query = ""
    output_language = ""
    gallery = []
    
    async for op in result:

        op = op.ops[0]

        if op['path'] == reformulated_question_path_id: # reforulated question
            output_language = op['value']["language"] # str
            output_query = op["value"]["question"]
        
        elif op['path'] == retriever_path_id: # documents
            docs = op['value']['documents'] # List[Document]
            docs_html = []
            for i, d in enumerate(docs, 1):
                docs_html.append(make_html_source(d, i))
            docs_html = "".join(docs_html)


        elif op['path'] == final_answer_path_id: # final answer
            new_token = op['value'] # str
            time.sleep(0.03)
            answer_yet = history[-1][1] + new_token
            answer_yet = parse_output_llm_with_sources(answer_yet)
            history[-1] = (query,answer_yet)



        history = [tuple(x) for x in history]
        yield history,docs_html,output_query,output_language,gallery

    # Log answer on Azure Blob Storage
    if os.getenv("GRADIO_ENV") != "local":
        timestamp = str(datetime.now().timestamp())
        file = timestamp + ".json"
        prompt = history[-1][0]
        logs = {
            "user_id": str(user_id),
            "prompt": prompt,
            "query": prompt,
            "question":output_query,
            "docs":serialize_docs(docs),
            "answer": history[-1][1],
            "time": timestamp,
        }
        log_on_azure(file, logs, share_client)


    gallery = [x.metadata["image_path"] for x in docs if (len(x.metadata["image_path"]) > 0 and "IAS" in x.metadata["image_path"])]
    if len(gallery) > 0:
        gallery = list(set("|".join(gallery).split("|")))
        gallery = [get_image_from_azure_blob_storage(x) for x in gallery]

    yield history,docs_html,output_query,output_language,gallery


    # memory.save_context(inputs, {"answer": gradio_format[-1][1]})
    # yield gradio_format, memory.load_memory_variables({})["history"], source_string
    


def make_html_source(source,i):
    meta = source.metadata
    # content = source.page_content.split(":",1)[1].strip()
    content = source.page_content.strip()
    return f"""
<div class="card">
    <div class="card-content">
        <h2>Doc {i} - {meta['short_name']} - Page {int(meta['page_number'])}</h2>
        <p>{content}</p>
    </div>
    <div class="card-footer">
        <span>{meta['name']}</span>
        <a href="{meta['url']}#page={int(meta['page_number'])}" target="_blank" class="pdf-link">
            <span role="img" aria-label="Open PDF">🔗</span>
        </a>
    </div>
</div>
"""




#     else:
#         docs_string = "No relevant passages found in the climate science reports (IPCC and IPBES)"
#         complete_response = "**No relevant passages found in the climate science reports (IPCC and IPBES), you may want to ask a more specific question (specifying your question on climate issues).**"
#         messages.append({"role": "assistant", "content": complete_response})
#         gradio_format = make_pairs([a["content"] for a in messages[1:]])
#         yield gradio_format, messages, docs_string


def save_feedback(feed: str, user_id):
    if len(feed) > 1:
        timestamp = str(datetime.now().timestamp())
        file = user_id + timestamp + ".json"
        logs = {
            "user_id": user_id,
            "feedback": feed,
            "time": timestamp,
        }
        log_on_azure(file, logs, share_client)
        return "Feedback submitted, thank you!"




def log_on_azure(file, logs, share_client):
    logs = json.dumps(logs)
    file_client = share_client.get_file_client(file)
    print("Uploading logs to Azure Blob Storage")
    print("----------------------------------")
    print("")
    print(logs)
    file_client.upload_file(logs)
    print("Logs uploaded to Azure Blob Storage")


# --------------------------------------------------------------------
# Gradio
# --------------------------------------------------------------------


init_prompt = """
Hello, I am ClimateQ&A, a conversational assistant designed to help you understand climate change and biodiversity loss. I will answer your questions by **sifting through the IPCC and IPBES scientific reports**.

How to use
- **Language**: You can ask me your questions in any language. 
- **Audience**: You can specify your audience (children, general public, experts) to get a more adapted answer.
- **Sources**: You can choose to search in the IPCC or IPBES reports, or both.

Limitations
*Please note that the AI is not perfect and may sometimes give irrelevant answers. If you are not satisfied with the answer, please ask a more specific question or report your feedback to help us improve the system.*

What do you want to learn ?
"""


def vote(data: gr.LikeData):
    if data.liked:
        print(data.value)
    else:
        print(data)



with gr.Blocks(title="Climate Q&A", css="style.css", theme=theme,elem_id = "main-component") as demo:
    # user_id_state = gr.State([user_id])

    with gr.Tab("ClimateQ&A"):

        with gr.Row(elem_id="chatbot-row"):
            with gr.Column(scale=2):
                # state = gr.State([system_template])
                chatbot = gr.Chatbot(
                    value=[(None,init_prompt)],
                    show_copy_button=True,show_label = False,elem_id="chatbot",layout = "panel",
                    avatar_images = ("https://i.ibb.co/YNyd5W2/logo4.png",None),
                )#,avatar_images = ("assets/logo4.png",None))
                
                # bot.like(vote,None,None)



                with gr.Row(elem_id = "input-message"):
                    textbox=gr.Textbox(placeholder="Ask me anything here!",show_label=False,scale=1,lines = 1,interactive = True)


            with gr.Column(scale=1, variant="panel",elem_id = "right-panel"):


                with gr.Tabs() as tabs:
                    with gr.TabItem("Examples",elem_id = "tab-examples",id = 0):
                                        
                        examples_hidden = gr.Textbox(visible = False)
                        first_key = list(QUESTIONS.keys())[0]
                        dropdown_samples = gr.Dropdown(QUESTIONS.keys(),value = first_key,interactive = True,show_label = True,label = "Select a category of sample questions",elem_id = "dropdown-samples")

                        samples = []
                        for i,key in enumerate(QUESTIONS.keys()):

                            examples_visible = True if i == 0 else False

                            with gr.Row(visible = examples_visible) as group_examples:

                                examples_questions = gr.Examples(
                                    QUESTIONS[key],
                                    [examples_hidden],
                                    examples_per_page=8,
                                    run_on_click=False,
                                    elem_id=f"examples{i}",
                                    # label = "Click on the example question or enter your own",
                                    # cache_examples=True,
                                )
                            
                            samples.append(group_examples)


                    with gr.Tab("Citations",elem_id = "tab-citations",id = 1):
                        sources_textbox = gr.HTML(show_label=False, elem_id="sources-textbox")
                        docs_textbox = gr.State("")

                    with gr.Tab("Configuration",elem_id = "tab-config",id = 2):

                        gr.Markdown("Reminder: You can talk in any language, ClimateQ&A is multi-lingual!")


                        dropdown_sources = gr.CheckboxGroup(
                            ["IPCC", "IPBES"],
                            label="Select source",
                            value=["IPCC"],
                            interactive=True,
                        )

                        dropdown_reports = gr.Dropdown(
                            POSSIBLE_REPORTS,
                            label="Or select specific reports",
                            multiselect=True,
                            value=None,
                            interactive=True,
                        )

                        dropdown_audience = gr.Dropdown(
                            ["Children","General public","Experts"],
                            label="Select audience",
                            value="Experts",
                            interactive=True,
                        )

                        output_query = gr.Textbox(label="Query used for retrieval",show_label = True,elem_id = "reformulated-query",lines = 2,interactive = False)
                        output_language = gr.Textbox(label="Language",show_label = True,elem_id = "language",lines = 1,interactive = False)

                    with gr.Tab("Images",elem_id = "tab-images",id = 3):
                        gallery = gr.Gallery()


                def start_chat(query,history):
                    history = history + [(query,"")]
                    return (gr.update(interactive = False),gr.update(selected=1),history)
                
                def finish_chat():
                    return (gr.update(interactive = True,value = ""))

                (textbox
                    .submit(start_chat, [textbox,chatbot], [textbox,tabs,chatbot],queue = False)
                    .success(chat, [textbox,chatbot,dropdown_audience, dropdown_sources,dropdown_reports], [chatbot,sources_textbox,output_query,output_language,gallery])
                    .success(finish_chat, None, [textbox])
                )

                (examples_hidden
                    .change(start_chat, [examples_hidden,chatbot], [textbox,tabs,chatbot],queue = False)
                    .success(chat, [examples_hidden,chatbot,dropdown_audience, dropdown_sources,dropdown_reports], [chatbot,sources_textbox,output_query,output_language,gallery])
                    .success(finish_chat, None, [textbox])
                )


                def change_sample_questions(key):
                    index = list(QUESTIONS.keys()).index(key)
                    visible_bools = [False] * len(samples)
                    visible_bools[index] = True
                    return [gr.update(visible=visible_bools[i]) for i in range(len(samples))]



                dropdown_samples.change(change_sample_questions,dropdown_samples,samples)

                # # textbox.submit(predict_climateqa,[textbox,bot],[None,bot,sources_textbox])
                # (textbox
                #     .submit(answer_user, [textbox,examples_hidden, bot], [textbox, bot],queue = False)
                #     .success(change_tab,None,tabs)
                #     .success(fetch_sources,[textbox,dropdown_sources], [textbox,sources_textbox,docs_textbox,output_query,output_language])
                #     .success(answer_bot, [textbox,bot,docs_textbox,output_query,output_language,dropdown_audience], [textbox,bot],queue = True)
                #     .success(lambda x : textbox,[textbox],[textbox])
                # )

                # (examples_hidden
                #     .change(answer_user_example, [textbox,examples_hidden, bot], [textbox, bot],queue = False)
                #     .success(change_tab,None,tabs)
                #     .success(fetch_sources,[textbox,dropdown_sources], [textbox,sources_textbox,docs_textbox,output_query,output_language])
                #     .success(answer_bot, [textbox,bot,docs_textbox,output_query,output_language,dropdown_audience], [textbox,bot],queue=True)
                #     .success(lambda x : textbox,[textbox],[textbox])
                # )
                # submit_button.click(answer_user, [textbox, bot], [textbox, bot], queue=True).then(
                #         answer_bot, [textbox,bot,dropdown_audience,dropdown_sources], [textbox,bot,sources_textbox]
                #     )














#---------------------------------------------------------------------------------------
# OTHER TABS
#---------------------------------------------------------------------------------------


    with gr.Tab("About ClimateQ&A",elem_classes = "max-height other-tabs"):
        with gr.Row():
            with gr.Column(scale=1):
                gr.Markdown(
                    """
    <p><b>Climate change and environmental disruptions have become some of the most pressing challenges facing our planet today</b>. As global temperatures rise and ecosystems suffer, it is essential for individuals to understand the gravity of the situation in order to make informed decisions and advocate for appropriate policy changes.</p>
    <p>However, comprehending the vast and complex scientific information can be daunting, as the scientific consensus references, such as <b>the Intergovernmental Panel on Climate Change (IPCC) reports, span thousands of pages</b>. To bridge this gap and make climate science more accessible, we introduce <b>ClimateQ&A as a tool to distill expert-level knowledge into easily digestible insights about climate science.</b></p>
    <div class="tip-box">
    <div class="tip-box-title">
        <span class="light-bulb" role="img" aria-label="Light Bulb">💡</span>
        How does ClimateQ&A work?
    </div>
    ClimateQ&A harnesses modern OCR techniques to parse and preprocess IPCC reports. By leveraging state-of-the-art question-answering algorithms, <i>ClimateQ&A is able to sift through the extensive collection of climate scientific reports and identify relevant passages in response to user inquiries</i>. Furthermore, the integration of the ChatGPT API allows ClimateQ&A to present complex data in a user-friendly manner, summarizing key points and facilitating communication of climate science to a wider audience.
    </div>
    """
                )

            with gr.Column(scale=1):
                gr.Markdown("![](https://i.postimg.cc/fLvsvMzM/Untitled-design-5.png)")
                gr.Markdown("*Source : IPCC AR6 - Synthesis Report of the IPCC 6th assessment report (AR6)*")

        gr.Markdown("## How to use ClimateQ&A")
        with gr.Row():
            with gr.Column(scale=1):
                gr.Markdown(
                    """
        ### Getting started
        - In the chatbot section, simply type your climate-related question, and ClimateQ&A will provide an answer with references to relevant IPCC reports.
            - ClimateQ&A retrieves specific passages from the IPCC reports to help answer your question accurately.
            - Source information, including page numbers and passages, is displayed on the right side of the screen for easy verification.
            - Feel free to ask follow-up questions within the chatbot for a more in-depth understanding.
            - You can ask question in any language, ClimateQ&A is multi-lingual !
        - ClimateQ&A integrates multiple sources (IPCC and IPBES, … ) to cover various aspects of environmental science, such as climate change and biodiversity. See all sources used below.
        """
                )
            with gr.Column(scale=1):
                gr.Markdown(
                    """
        ### Limitations
        <div class="warning-box">
        <ul>
            <li>Please note that, like any AI, the model may occasionally generate an inaccurate or imprecise answer. Always refer to the provided sources to verify the validity of the information given. If you find any issues with the response, kindly provide feedback to help improve the system.</li>
            <li>ClimateQ&A is specifically designed for climate-related inquiries. If you ask a non-environmental question, the chatbot will politely remind you that its focus is on climate and environmental issues.</li>
        </div>
        """
                )


    with gr.Tab("Contact, feedback and feature requests",elem_classes = "max-height other-tabs"):
        gr.Markdown(
            """

        For any question or press request, contact Théo Alves Da Costa at <b>theo.alvesdacosta@ekimetrics.com</b>

        - ClimateQ&A welcomes community contributions. To participate, head over to the Community Tab and create a "New Discussion" to ask questions and share your insights.
        - Provide feedback through email, letting us know which insights you found accurate, useful, or not. Your input will help us improve the platform.
        - Only a few sources (see below) are integrated (all IPCC, IPBES), if you are a climate science researcher and net to sift through another report, please let us know.
        
        *This tool has been developed by the R&D lab at **Ekimetrics** (Jean Lelong, Nina Achache, Gabriel Olympie, Nicolas Chesneau, Natalia De la Calzada, Théo Alves Da Costa)*
        """
        )
    # with gr.Row():
    #     with gr.Column(scale=1):
    #         gr.Markdown("### Feedbacks")
    #         feedback = gr.Textbox(label="Write your feedback here")
    #         feedback_output = gr.Textbox(label="Submit status")
    #         feedback_save = gr.Button(value="submit feedback")
    #         feedback_save.click(
    #             save_feedback,
    #             inputs=[feedback, user_id_state],
    #             outputs=feedback_output,
    #         )
    #         gr.Markdown(
    #             "If you need us to ask another climate science report or ask any question, contact us at <b>theo.alvesdacosta@ekimetrics.com</b>"
    #         )

    #     with gr.Column(scale=1):
    #         gr.Markdown("### OpenAI API")
    #         gr.Markdown(
    #             "To make climate science accessible to a wider audience, we have opened our own OpenAI API key with a monthly cap of $1000. If you already have an API key, please use it to help conserve bandwidth for others."
    #         )
    #         openai_api_key_textbox = gr.Textbox(
    #             placeholder="Paste your OpenAI API key (sk-...) and hit Enter",
    #             show_label=False,
    #             lines=1,
    #             type="password",
    #         )
    # openai_api_key_textbox.change(set_openai_api_key, inputs=[openai_api_key_textbox])
    # openai_api_key_textbox.submit(set_openai_api_key, inputs=[openai_api_key_textbox])

    with gr.Tab("Sources",elem_classes = "max-height other-tabs"):
        gr.Markdown("""
    | Source | Report | URL | Number of pages | Release date |
    | --- | --- | --- | --- | --- |
    IPCC | Summary for Policymakers. In: Climate Change 2021: The Physical Science Basis. Contribution of the WGI to the AR6 of the IPCC. | https://www.ipcc.ch/report/ar6/wg1/downloads/report/IPCC_AR6_WGI_SPM.pdf | 32 | 2021
    IPCC | Full Report. In: Climate Change 2021: The Physical Science Basis. Contribution of the WGI to the AR6 of the IPCC. | https://report.ipcc.ch/ar6/wg1/IPCC_AR6_WGI_FullReport.pdf | 2409 | 2021
    IPCC | Technical Summary. In: Climate Change 2021: The Physical Science Basis. Contribution of the WGI to the AR6 of the IPCC. | https://www.ipcc.ch/report/ar6/wg1/downloads/report/IPCC_AR6_WGI_TS.pdf | 112 | 2021
    IPCC | Summary for Policymakers. In: Climate Change 2022: Impacts, Adaptation and Vulnerability. Contribution of the WGII to the AR6 of the IPCC. | https://www.ipcc.ch/report/ar6/wg2/downloads/report/IPCC_AR6_WGII_SummaryForPolicymakers.pdf | 34 | 2022
    IPCC | Technical Summary. In: Climate Change 2022: Impacts, Adaptation and Vulnerability. Contribution of the WGII to the AR6 of the IPCC. | https://www.ipcc.ch/report/ar6/wg2/downloads/report/IPCC_AR6_WGII_TechnicalSummary.pdf | 84 | 2022
    IPCC | Full Report. In: Climate Change 2022: Impacts, Adaptation and Vulnerability. Contribution of the WGII to the AR6 of the IPCC. | https://report.ipcc.ch/ar6/wg2/IPCC_AR6_WGII_FullReport.pdf | 3068 | 2022
    IPCC | Summary for Policymakers. In: Climate Change 2022: Mitigation of Climate Change. Contribution of the WGIII to the AR6 of the IPCC. | https://www.ipcc.ch/report/ar6/wg3/downloads/report/IPCC_AR6_WGIII_SummaryForPolicymakers.pdf | 50 | 2022
    IPCC | Technical Summary. In: Climate Change 2022: Mitigation of Climate Change. Contribution of the WGIII to the AR6 of the IPCC. | https://www.ipcc.ch/report/ar6/wg3/downloads/report/IPCC_AR6_WGIII_TechnicalSummary.pdf | 102 | 2022
    IPCC | Full Report. In: Climate Change 2022: Mitigation of Climate Change. Contribution of the WGIII to the AR6 of the IPCC. | https://www.ipcc.ch/report/ar6/wg3/downloads/report/IPCC_AR6_WGIII_FullReport.pdf | 2258 | 2022
    IPCC | Summary for Policymakers. In: Global Warming of 1.5°C. An IPCC Special Report on the impacts of global warming of 1.5°C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty. | https://www.ipcc.ch/site/assets/uploads/sites/2/2022/06/SPM_version_report_LR.pdf | 24 | 2018
    IPCC | Summary for Policymakers. In: Climate Change and Land: an IPCC special report on climate change, desertification, land degradation, sustainable land management, food security, and greenhouse gas fluxes in terrestrial ecosystems. | https://www.ipcc.ch/site/assets/uploads/sites/4/2022/11/SRCCL_SPM.pdf | 36 | 2019
    IPCC | Summary for Policymakers. In: IPCC Special Report on the Ocean and Cryosphere in a Changing Climate. | https://www.ipcc.ch/site/assets/uploads/sites/3/2022/03/01_SROCC_SPM_FINAL.pdf | 36 | 2019
    IPCC | Technical Summary. In: IPCC Special Report on the Ocean and Cryosphere in a Changing Climate. | https://www.ipcc.ch/site/assets/uploads/sites/3/2022/03/02_SROCC_TS_FINAL.pdf | 34 | 2019
    IPCC | Chapter 1 - Framing and Context of the Report. In: IPCC Special Report on the Ocean and Cryosphere in a Changing Climate. | https://www.ipcc.ch/site/assets/uploads/sites/3/2022/03/03_SROCC_Ch01_FINAL.pdf | 60 | 2019
    IPCC | Chapter 2 - High Mountain Areas. In: IPCC Special Report on the Ocean and Cryosphere in a Changing Climate. | https://www.ipcc.ch/site/assets/uploads/sites/3/2022/03/04_SROCC_Ch02_FINAL.pdf | 72 | 2019
    IPCC | Chapter 3 - Polar Regions. In: IPCC Special Report on the Ocean and Cryosphere in a Changing Climate. | https://www.ipcc.ch/site/assets/uploads/sites/3/2022/03/05_SROCC_Ch03_FINAL.pdf | 118 | 2019
    IPCC | Chapter 4 - Sea Level Rise and Implications for Low-Lying Islands, Coasts and Communities. In: IPCC Special Report on the Ocean and Cryosphere in a Changing Climate. | https://www.ipcc.ch/site/assets/uploads/sites/3/2022/03/06_SROCC_Ch04_FINAL.pdf | 126 | 2019
    IPCC | Chapter 5 -  Changing Ocean, Marine Ecosystems, and Dependent Communities. In: IPCC Special Report on the Ocean and Cryosphere in a Changing Climate. | https://www.ipcc.ch/site/assets/uploads/sites/3/2022/03/07_SROCC_Ch05_FINAL.pdf | 142 | 2019
    IPCC | Chapter 6 - Extremes, Abrupt Changes and Managing Risk. In: IPCC Special Report on the Ocean and Cryosphere in a Changing Climate. | https://www.ipcc.ch/site/assets/uploads/sites/3/2022/03/08_SROCC_Ch06_FINAL.pdf | 68 | 2019
    IPCC | Cross-Chapter Box 9: Integrative Cross-Chapter Box on Low-Lying Islands and Coasts. In: IPCC Special Report on the Ocean and Cryosphere in a Changing Climate. | https://www.ipcc.ch/site/assets/uploads/sites/3/2019/11/11_SROCC_CCB9-LLIC_FINAL.pdf | 18 | 2019
    IPCC | Annex I: Glossary [Weyer, N.M. (ed.)]. In: IPCC Special Report on the Ocean and Cryosphere in a Changing Climate. | https://www.ipcc.ch/site/assets/uploads/sites/3/2022/03/10_SROCC_AnnexI-Glossary_FINAL.pdf | 28 | 2019
    IPBES | Full Report. Global assessment report on biodiversity and ecosystem services of the IPBES. | https://zenodo.org/record/6417333/files/202206_IPBES%20GLOBAL%20REPORT_FULL_DIGITAL_MARCH%202022.pdf | 1148 | 2019
    IPBES | Summary for Policymakers. Global assessment report on biodiversity and ecosystem services of the IPBES (Version 1). | https://zenodo.org/record/3553579/files/ipbes_global_assessment_report_summary_for_policymakers.pdf | 60 | 2019
    IPBES | Full Report. Thematic assessment of the sustainable use of wild species of the IPBES. | https://zenodo.org/record/7755805/files/IPBES_ASSESSMENT_SUWS_FULL_REPORT.pdf | 1008 | 2022
    IPBES | Summary for Policymakers. Summary for policymakers of the thematic assessment of the sustainable use of wild species of the IPBES. | https://zenodo.org/record/7411847/files/EN_SPM_SUSTAINABLE%20USE%20OF%20WILD%20SPECIES.pdf | 44 | 2022
    IPBES | Full Report. Regional Assessment Report on Biodiversity and Ecosystem Services for Africa. | https://zenodo.org/record/3236178/files/ipbes_assessment_report_africa_EN.pdf | 494 | 2018
    IPBES | Summary for Policymakers. Regional Assessment Report on Biodiversity and Ecosystem Services for Africa. | https://zenodo.org/record/3236189/files/ipbes_assessment_spm_africa_EN.pdf | 52 | 2018
    IPBES | Full Report. Regional Assessment Report on Biodiversity and Ecosystem Services for the Americas. | https://zenodo.org/record/3236253/files/ipbes_assessment_report_americas_EN.pdf | 660 | 2018
    IPBES | Summary for Policymakers. Regional Assessment Report on Biodiversity and Ecosystem Services for the Americas. | https://zenodo.org/record/3236292/files/ipbes_assessment_spm_americas_EN.pdf | 44 | 2018
    IPBES | Full Report. Regional Assessment Report on Biodiversity and Ecosystem Services for Asia and the Pacific. | https://zenodo.org/record/3237374/files/ipbes_assessment_report_ap_EN.pdf | 616 | 2018
    IPBES | Summary for Policymakers. Regional Assessment Report on Biodiversity and Ecosystem Services for Asia and the Pacific. | https://zenodo.org/record/3237383/files/ipbes_assessment_spm_ap_EN.pdf | 44 | 2018
    IPBES | Full Report. Regional Assessment Report on Biodiversity and Ecosystem Services for Europe and Central Asia. | https://zenodo.org/record/3237429/files/ipbes_assessment_report_eca_EN.pdf | 894 | 2018
    IPBES | Summary for Policymakers. Regional Assessment Report on Biodiversity and Ecosystem Services for Europe and Central Asia. | https://zenodo.org/record/3237468/files/ipbes_assessment_spm_eca_EN.pdf | 52 | 2018
    IPBES | Full Report. Assessment Report on Land Degradation and Restoration. | https://zenodo.org/record/3237393/files/ipbes_assessment_report_ldra_EN.pdf | 748 | 2018
    IPBES | Summary for Policymakers. Assessment Report on Land Degradation and Restoration. | https://zenodo.org/record/3237393/files/ipbes_assessment_report_ldra_EN.pdf | 48 | 2018
""")

    with gr.Tab("Carbon Footprint",elem_classes = "max-height other-tabs"):
        gr.Markdown("""

Carbon emissions were measured during the development and inference process using CodeCarbon [https://github.com/mlco2/codecarbon](https://github.com/mlco2/codecarbon)

| Phase | Description | Emissions | Source |
| --- | --- | --- | --- |
| Development  | OCR and parsing all pdf documents with AI | 28gCO2e | CodeCarbon |
| Development | Question Answering development | 114gCO2e | CodeCarbon |
| Inference | Question Answering | ~0.102gCO2e / call | CodeCarbon |
| Inference | API call to turbo-GPT | ~0.38gCO2e / call | https://medium.com/@chrispointon/the-carbon-footprint-of-chatgpt-e1bc14e4cc2a |

Carbon Emissions are **relatively low but not negligible** compared to other usages: one question asked to ClimateQ&A is around 0.482gCO2e - equivalent to 2.2m by car (https://datagir.ademe.fr/apps/impact-co2/)  
Or around 2 to 4 times more than a typical Google search. 
"""
    )
        
    with gr.Tab("Changelog",elem_classes = "max-height other-tabs"):
        gr.Markdown("""
                    
##### Upcoming features
- Figures retrieval
- Conversational chat
- Intent routing
- Report filtering
                    
##### v1.2.0 - *2023-11-27
- Added new IPBES assessment on Invasive Species (SPM and chapters)
- Switched all the codebase to LCEL (Langchain Expression Language)
- Added sample questions by category
- Switched embeddings from old ``sentence-transformers/multi-qa-mpnet-base-dot-v1`` to ``BAAI/bge-base-en-v1.5``

##### v1.1.0 - *2023-10-16*
- ClimateQ&A on Hugging Face is finally working again with all the new features !
- Switched all python code to langchain codebase for cleaner code, easier maintenance and future features
- Updated GPT model to August version
- Added streaming response to improve UX
- Created a custom Retriever chain to avoid calling the LLM if there is no documents retrieved
- Use of HuggingFace embed on https://climateqa.com to avoid demultiplying deployments
                    
##### v1.0.0 - *2023-05-11*
- First version of clean interface on https://climateqa.com
- Add children mode on https://climateqa.com
- Add follow-up questions https://climateqa.com
"""
    )

    demo.queue(concurrency_count=16)

demo.launch()