File size: 27,693 Bytes
eead5d8 caf1faa 088e816 eead5d8 a5686cb c3b815e ff42e3f f0fc5f8 71ab0a8 5f9881c f842a0e 4b4bf28 bed4e9b d26538b 887905a 4b4bf28 f0fc5f8 f842a0e f0fc5f8 6d2199d f0fc5f8 d5c9c65 12c9afe 91c4196 76603df 5f9881c f0fc5f8 5f9881c d14568c 088e816 5f9881c 481f3b1 5f9881c 6b43c86 5f9881c 6541df3 6b43c86 363fe2e 088e816 6541df3 f0fc5f8 76603df f0fc5f8 ff42e3f 6d2199d ff42e3f c9346b3 6b43c86 f0fc5f8 abfa81d ff42e3f 46e3999 6d2199d f0fc5f8 7498c33 99e2b1f 6d2199d 91c4196 6d2199d 91c4196 6d2199d d4c1a74 6d2199d 91c4196 6d2199d a4595fc ff42e3f 0fb079d c974ee5 f0fc5f8 5664fc8 7ec5d9e 5664fc8 aa37f44 57a1ed7 f0fc5f8 6b43c86 d4c1a74 76603df 40084ba 5f9881c c974ee5 088e816 887905a 76603df 91f77da 3d561c7 6b43c86 91f77da 6b43c86 5f9881c 40084ba 4ab6519 fd2ccc6 3d561c7 088e816 12c9afe d78271b d4c1a74 5f9881c caf1faa 088e816 57a1ed7 a973186 3d561c7 088e816 7da1a3a df5d08d 088e816 7da1a3a d78271b 6c5a20c 40084ba 7da1a3a 76603df 7da1a3a 34de7db 76603df 48e003d 7335378 76603df 24f8d00 7da1a3a df5d08d 088e816 d78271b df5d08d 24f8d00 7da1a3a 435c75a 24f8d00 63d1de4 24f8d00 4b4bf28 24f8d00 ee3f645 24f8d00 435c75a 24f8d00 d78271b 6c5a20c 4b4bf28 91c4196 6d2199d 91c4196 6d2199d 91c4196 12574b1 dc1d7e6 fdf1622 91c4196 6d2199d 91c4196 6d2199d 91c4196 caf1faa f0fc5f8 ff42e3f 787d3cb c974ee5 787d3cb 38ed905 787d3cb f0fc5f8 38ed905 787d3cb 7d9ec3d 5f9881c 787d3cb f0fc5f8 c974ee5 6b43c86 c974ee5 3c9e1e2 6b43c86 df5d08d 49acaf1 5c3a3a4 49acaf1 5f9881c f0fc5f8 fa9f031 f0fc5f8 5f9881c bed4e9b 38ed905 12f47f8 27a9af5 4ab6519 a3bf481 c974ee5 3d561c7 a3bf481 887905a 4ab6519 fa9f031 484fc0d fa9f031 3c9e1e2 c9346b3 5f9881c 3c9e1e2 5f9881c 8edfef8 5f9881c 5c3a3a4 c9346b3 363fe2e c9346b3 363fe2e c9346b3 363fe2e c9346b3 363fe2e c9346b3 484fc0d c9346b3 484fc0d 3c9e1e2 c9346b3 c3b815e 6541df3 c9346b3 c3b815e c9346b3 6541df3 484fc0d c9346b3 40084ba c9346b3 7ec5d9e c9346b3 7ec5d9e c9346b3 d14568c c9346b3 d14568c f0fc5f8 c9346b3 c3b815e c9346b3 c3b815e c9346b3 c3b815e c9346b3 c3b815e c9346b3 c3b815e c9346b3 c3b815e caf1faa 887905a f0fc5f8 0fb079d 76603df f760165 5c3a3a4 4b4bf28 bed4e9b 4b4bf28 12c9afe c3b815e 4b4bf28 49acaf1 6b43c86 d78271b 484fc0d d78271b 484fc0d c9346b3 d78271b c9346b3 6c5a20c c9346b3 6b43c86 4b4bf28 40084ba 12c9afe c9346b3 4b4bf28 40084ba 49acaf1 c9346b3 4b4bf28 6c5a20c 76603df c9346b3 4b4bf28 c9346b3 4b4bf28 c9346b3 40084ba c3b815e c9346b3 887905a b6bb4d7 d730458 e77b244 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 |
from climateqa.engine.embeddings import get_embeddings_function
embeddings_function = get_embeddings_function()
from sentence_transformers import CrossEncoder
# reranker = CrossEncoder("mixedbread-ai/mxbai-rerank-xsmall-v1")
import gradio as gr
from gradio_modal import Modal
import pandas as pd
import numpy as np
import os
import time
import re
import json
from gradio import ChatMessage
# from gradio_modal import Modal
from io import BytesIO
import base64
from datetime import datetime
from azure.storage.fileshare import ShareServiceClient
from utils import create_user_id
from gradio_modal import Modal
from PIL import Image
from langchain_core.runnables.schema import StreamEvent
# ClimateQ&A imports
from climateqa.engine.llm import get_llm
from climateqa.engine.vectorstore import get_pinecone_vectorstore
# from climateqa.knowledge.retriever import ClimateQARetriever
from climateqa.engine.reranker import get_reranker
from climateqa.engine.embeddings import get_embeddings_function
from climateqa.engine.chains.prompts import audience_prompts
from climateqa.sample_questions import QUESTIONS
from climateqa.constants import POSSIBLE_REPORTS, OWID_CATEGORIES
from climateqa.utils import get_image_from_azure_blob_storage
from climateqa.engine.graph import make_graph_agent
from climateqa.engine.embeddings import get_embeddings_function
from climateqa.engine.chains.retrieve_papers import find_papers
from front.utils import serialize_docs,process_figures,make_html_df
from climateqa.event_handler import init_audience, handle_retrieved_documents, stream_answer,handle_retrieved_owid_graphs
# Load environment variables in local mode
try:
from dotenv import load_dotenv
load_dotenv()
except Exception as e:
pass
import requests
# Set up Gradio Theme
theme = gr.themes.Base(
primary_hue="blue",
secondary_hue="red",
font=[gr.themes.GoogleFont("Poppins"), "ui-sans-serif", "system-ui", "sans-serif"],
)
init_prompt = ""
system_template = {
"role": "system",
"content": init_prompt,
}
account_key = os.environ["BLOB_ACCOUNT_KEY"]
if len(account_key) == 86:
account_key += "=="
credential = {
"account_key": account_key,
"account_name": os.environ["BLOB_ACCOUNT_NAME"],
}
account_url = os.environ["BLOB_ACCOUNT_URL"]
file_share_name = "climateqa"
service = ShareServiceClient(account_url=account_url, credential=credential)
share_client = service.get_share_client(file_share_name)
user_id = create_user_id()
CITATION_LABEL = "BibTeX citation for ClimateQ&A"
CITATION_TEXT = r"""@misc{climateqa,
author={Théo Alves Da Costa, Timothée Bohe},
title={ClimateQ&A, AI-powered conversational assistant for climate change and biodiversity loss},
year={2024},
howpublished= {\url{https://climateqa.com}},
}
@software{climateqa,
author = {Théo Alves Da Costa, Timothée Bohe},
publisher = {ClimateQ&A},
title = {ClimateQ&A, AI-powered conversational assistant for climate change and biodiversity loss},
}
"""
# Create vectorstore and retriever
vectorstore = get_pinecone_vectorstore(embeddings_function, index_name = os.getenv("PINECONE_API_INDEX"))
vectorstore_graphs = get_pinecone_vectorstore(embeddings_function, index_name = os.getenv("PINECONE_API_INDEX_OWID"), text_key="description")
llm = get_llm(provider="openai",max_tokens = 1024,temperature = 0.0)
reranker = get_reranker("nano")
agent = make_graph_agent(llm=llm, vectorstore_ipcc=vectorstore, vectorstore_graphs=vectorstore_graphs, reranker=reranker)
async def chat(query, history, audience, sources, reports, relevant_content_sources):
"""taking a query and a message history, use a pipeline (reformulation, retriever, answering) to yield a tuple of:
(messages in gradio format, messages in langchain format, source documents)"""
date_now = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
print(f">> NEW QUESTION ({date_now}) : {query}")
audience_prompt = init_audience(audience)
# Prepare default values
if sources is None or len(sources) == 0:
sources = ["IPCC", "IPBES", "IPOS"]
if reports is None or len(reports) == 0:
reports = []
inputs = {"user_input": query,"audience": audience_prompt,"sources_input":sources, "relevant_content_sources" : relevant_content_sources}
result = agent.astream_events(inputs,version = "v1")
docs = []
used_figures=[]
related_contents = []
docs_html = ""
output_query = ""
output_language = ""
output_keywords = ""
start_streaming = False
graphs_html = ""
figures = '<div class="figures-container"><p></p> </div>'
steps_display = {
"categorize_intent":("🔄️ Analyzing user message",True),
"transform_query":("🔄️ Thinking step by step to answer the question",True),
"retrieve_documents":("🔄️ Searching in the knowledge base",False),
}
used_documents = []
answer_message_content = ""
try:
async for event in result:
if "langgraph_node" in event["metadata"]:
node = event["metadata"]["langgraph_node"]
if event["event"] == "on_chain_end" and event["name"] == "retrieve_documents" :# when documents are retrieved
docs, docs_html, history, used_documents, related_contents = handle_retrieved_documents(event, history, used_documents)
elif event["event"] == "on_chain_end" and node == "categorize_intent" and event["name"] == "_write": # when the query is transformed
intent = event["data"]["output"]["intent"]
if "language" in event["data"]["output"]:
output_language = event["data"]["output"]["language"]
else :
output_language = "English"
history[-1].content = f"Language identified : {output_language} \n Intent identified : {intent}"
elif event["name"] in steps_display.keys() and event["event"] == "on_chain_start": #display steps
event_description, display_output = steps_display[node]
if not hasattr(history[-1], 'metadata') or history[-1].metadata["title"] != event_description: # if a new step begins
history.append(ChatMessage(role="assistant", content = "", metadata={'title' :event_description}))
elif event["name"] != "transform_query" and event["event"] == "on_chat_model_stream" and node in ["answer_rag", "answer_search","answer_chitchat"]:# if streaming answer
history, start_streaming, answer_message_content = stream_answer(history, event, start_streaming, answer_message_content)
elif event["name"] in ["retrieve_graphs", "retrieve_graphs_ai"] and event["event"] == "on_chain_end":
graphs_html = handle_retrieved_owid_graphs(event, graphs_html)
if event["name"] == "transform_query" and event["event"] =="on_chain_end":
if hasattr(history[-1],"content"):
history[-1].content += "Decompose question into sub-questions: \n\n - " + "\n - ".join([q["question"] for q in event["data"]["output"]["remaining_questions"]])
if event["name"] == "categorize_intent" and event["event"] == "on_chain_start":
print("X")
yield history, docs_html, output_query, output_language, related_contents , graphs_html, #,output_query,output_keywords
except Exception as e:
print(event, "has failed")
raise gr.Error(f"{e}")
try:
# Log answer on Azure Blob Storage
if os.getenv("GRADIO_ENV") != "local":
timestamp = str(datetime.now().timestamp())
file = timestamp + ".json"
prompt = history[1]["content"]
logs = {
"user_id": str(user_id),
"prompt": prompt,
"query": prompt,
"question":output_query,
"sources":sources,
"docs":serialize_docs(docs),
"answer": history[-1].content,
"time": timestamp,
}
log_on_azure(file, logs, share_client)
except Exception as e:
print(f"Error logging on Azure Blob Storage: {e}")
raise gr.Error(f"ClimateQ&A Error: {str(e)[:100]} - The error has been noted, try another question and if the error remains, you can contact us :)")
yield history, docs_html, output_query, output_language, related_contents, graphs_html
def save_feedback(feed: str, user_id):
if len(feed) > 1:
timestamp = str(datetime.now().timestamp())
file = user_id + timestamp + ".json"
logs = {
"user_id": user_id,
"feedback": feed,
"time": timestamp,
}
log_on_azure(file, logs, share_client)
return "Feedback submitted, thank you!"
def log_on_azure(file, logs, share_client):
logs = json.dumps(logs)
file_client = share_client.get_file_client(file)
file_client.upload_file(logs)
# --------------------------------------------------------------------
# Gradio
# --------------------------------------------------------------------
init_prompt = """
Hello, I am ClimateQ&A, a conversational assistant designed to help you understand climate change and biodiversity loss. I will answer your questions by **sifting through the IPCC and IPBES scientific reports**.
❓ How to use
- **Language**: You can ask me your questions in any language.
- **Audience**: You can specify your audience (children, general public, experts) to get a more adapted answer.
- **Sources**: You can choose to search in the IPCC or IPBES reports, or both.
⚠️ Limitations
*Please note that the AI is not perfect and may sometimes give irrelevant answers. If you are not satisfied with the answer, please ask a more specific question or report your feedback to help us improve the system.*
🛈 Information
Please note that we log your questions for meta-analysis purposes, so avoid sharing any sensitive or personal information.
What do you want to learn ?
"""
def vote(data: gr.LikeData):
if data.liked:
print(data.value)
else:
print(data)
def save_graph(saved_graphs_state, embedding, category):
print(f"\nCategory:\n{saved_graphs_state}\n")
if category not in saved_graphs_state:
saved_graphs_state[category] = []
if embedding not in saved_graphs_state[category]:
saved_graphs_state[category].append(embedding)
return saved_graphs_state, gr.Button("Graph Saved")
with gr.Blocks(title="Climate Q&A", css_paths=os.getcwd()+ "/style.css", theme=theme,elem_id = "main-component") as demo:
chat_completed_state = gr.State(0)
current_graphs = gr.State([])
saved_graphs = gr.State({})
with gr.Tab("ClimateQ&A"):
with gr.Row(elem_id="chatbot-row"):
with gr.Column(scale=2):
chatbot = gr.Chatbot(
value = [ChatMessage(role="assistant", content=init_prompt)],
type = "messages",
show_copy_button=True,
show_label = False,
elem_id="chatbot",
layout = "panel",
avatar_images = (None,"https://i.ibb.co/YNyd5W2/logo4.png"),
max_height="80vh",
height="100vh"
)
# bot.like(vote,None,None)
with gr.Row(elem_id = "input-message"):
textbox=gr.Textbox(placeholder="Ask me anything here!",show_label=False,scale=7,lines = 1,interactive = True,elem_id="input-textbox")
with gr.Column(scale=2, variant="panel",elem_id = "right-panel"):
with gr.Tabs(elem_id = "right_panel_tab") as tabs:
with gr.TabItem("Examples",elem_id = "tab-examples",id = 0):
examples_hidden = gr.Textbox(visible = False)
first_key = list(QUESTIONS.keys())[0]
dropdown_samples = gr.Dropdown(QUESTIONS.keys(),value = first_key,interactive = True,show_label = True,label = "Select a category of sample questions",elem_id = "dropdown-samples")
samples = []
for i,key in enumerate(QUESTIONS.keys()):
examples_visible = True if i == 0 else False
with gr.Row(visible = examples_visible) as group_examples:
examples_questions = gr.Examples(
QUESTIONS[key],
[examples_hidden],
examples_per_page=8,
run_on_click=False,
elem_id=f"examples{i}",
api_name=f"examples{i}",
# label = "Click on the example question or enter your own",
# cache_examples=True,
)
samples.append(group_examples)
with gr.Tab("Configuration", id = 10, ) as tab_config:
gr.Markdown("Reminders: You can talk in any language, ClimateQ&A is multi-lingual!")
with gr.Row():
dropdown_sources = gr.CheckboxGroup(
["IPCC", "IPBES","IPOS"],
label="Select source",
value=["IPCC"],
interactive=True,
)
dropdown_external_sources = gr.CheckboxGroup(
["IPCC figures","OpenAlex", "OurWorldInData"],
label="Select database to search for relevant content",
value=["IPCC figures"],
interactive=True,
)
dropdown_reports = gr.Dropdown(
POSSIBLE_REPORTS,
label="Or select specific reports",
multiselect=True,
value=None,
interactive=True,
)
search_only = gr.Checkbox(label="Search only without chating", value=False, interactive=True, elem_id="checkbox-chat")
dropdown_audience = gr.Dropdown(
["Children","General public","Experts"],
label="Select audience",
value="Experts",
interactive=True,
)
after = gr.Slider(minimum=1950,maximum=2023,step=1,value=1960,label="Publication date",show_label=True,interactive=True,elem_id="date-papers", visible=False)
output_query = gr.Textbox(label="Query used for retrieval",show_label = True,elem_id = "reformulated-query",lines = 2,interactive = False, visible= False)
output_language = gr.Textbox(label="Language",show_label = True,elem_id = "language",lines = 1,interactive = False, visible= False)
dropdown_external_sources.change(lambda x: gr.update(visible = True ) if "OpenAlex" in x else gr.update(visible=False) , inputs=[dropdown_external_sources], outputs=[after])
# dropdown_external_sources.change(lambda x: gr.update(visible = True ) if "OpenAlex" in x else gr.update(visible=False) , inputs=[dropdown_external_sources], outputs=[after], visible=True)
with gr.Tab("Sources",elem_id = "tab-sources",id = 1) as tab_sources:
sources_textbox = gr.HTML(show_label=False, elem_id="sources-textbox")
docs_textbox = gr.State("")
with gr.Tab("Recommended content", elem_id="tab-recommended_content",id=2) as tab_recommended_content:
with gr.Tabs(elem_id = "group-subtabs") as tabs_recommended_content:
with gr.Tab("Figures",elem_id = "tab-figures",id = 3) as tab_figures:
sources_raw = gr.State()
with Modal(visible=False, elem_id="modal_figure_galery") as modal:
gallery_component = gr.Gallery(object_fit='scale-down',elem_id="gallery-component", height="80vh")
show_full_size_figures = gr.Button("Show figures in full size",elem_id="show-figures",interactive=True)
show_full_size_figures.click(lambda : Modal(visible=True),None,modal)
figures_cards = gr.HTML(show_label=False, elem_id="sources-figures")
with gr.Tab("Papers",elem_id = "tab-citations",id = 4) as tab_papers:
# btn_summary = gr.Button("Summary")
# Fenêtre simulée pour le Summary
with gr.Accordion(visible=True, elem_id="papers-summary-popup", label= "See summary of relevant papers", open= False) as summary_popup:
papers_summary = gr.Markdown("", visible=True, elem_id="papers-summary")
# btn_relevant_papers = gr.Button("Relevant papers")
# Fenêtre simulée pour les Relevant Papers
with gr.Accordion(visible=True, elem_id="papers-relevant-popup",label= "See relevant papers", open= False) as relevant_popup:
papers_html = gr.HTML(show_label=False, elem_id="papers-textbox")
docs_textbox = gr.State("")
btn_citations_network = gr.Button("Explore papers citations network")
# Fenêtre simulée pour le Citations Network
with Modal(visible=False) as modal:
citations_network = gr.HTML("<h3>Citations Network Graph</h3>", visible=True, elem_id="papers-citations-network")
btn_citations_network.click(lambda: Modal(visible=True), None, modal)
with gr.Tab("Graphs", elem_id="tab-graphs", id=5) as tab_graphs:
graphs_container = gr.HTML("<h2>There are no graphs to be displayed at the moment. Try asking another question.</h2>",elem_id="graphs-container")
current_graphs.change(lambda x : x, inputs=[current_graphs], outputs=[graphs_container])
# with gr.Tab("OECD",elem_id = "tab-oecd",id = 6):
# oecd_indicator = "RIVER_FLOOD_RP100_POP_SH"
# oecd_topic = "climate"
# oecd_latitude = "46.8332"
# oecd_longitude = "5.3725"
# oecd_zoom = "5.6442"
# # Create the HTML content with the iframe
# iframe_html = f"""
# <iframe src="https://localdataportal.oecd.org/maps.html?indicator={oecd_indicator}&topic={oecd_topic}&latitude={oecd_latitude}&longitude={oecd_longitude}&zoom={oecd_zoom}"
# width="100%" height="600" frameborder="0" style="border:0;" allowfullscreen></iframe>
# """
# oecd_textbox = gr.HTML(iframe_html, show_label=False, elem_id="oecd-textbox")
#---------------------------------------------------------------------------------------
# OTHER TABS
#---------------------------------------------------------------------------------------
# with gr.Tab("Settings",elem_id = "tab-config",id = 2):
# gr.Markdown("Reminder: You can talk in any language, ClimateQ&A is multi-lingual!")
# dropdown_sources = gr.CheckboxGroup(
# ["IPCC", "IPBES","IPOS", "OpenAlex"],
# label="Select source",
# value=["IPCC"],
# interactive=True,
# )
# dropdown_reports = gr.Dropdown(
# POSSIBLE_REPORTS,
# label="Or select specific reports",
# multiselect=True,
# value=None,
# interactive=True,
# )
# dropdown_audience = gr.Dropdown(
# ["Children","General public","Experts"],
# label="Select audience",
# value="Experts",
# interactive=True,
# )
# output_query = gr.Textbox(label="Query used for retrieval",show_label = True,elem_id = "reformulated-query",lines = 2,interactive = False)
# output_language = gr.Textbox(label="Language",show_label = True,elem_id = "language",lines = 1,interactive = False)
with gr.Tab("About",elem_classes = "max-height other-tabs"):
with gr.Row():
with gr.Column(scale=1):
gr.Markdown(
"""
### More info
- See more info at [https://climateqa.com](https://climateqa.com/docs/intro/)
- Feedbacks on this [form](https://forms.office.com/e/1Yzgxm6jbp)
### Citation
"""
)
with gr.Accordion(CITATION_LABEL,elem_id="citation", open = False,):
# # Display citation label and text)
gr.Textbox(
value=CITATION_TEXT,
label="",
interactive=False,
show_copy_button=True,
lines=len(CITATION_TEXT.split('\n')),
)
def start_chat(query,history):
history = history + [ChatMessage(role="user", content=query)]
return (gr.update(interactive = False),gr.update(selected=1),history)
def finish_chat():
return gr.update(interactive = True,value = "")
# Initialize visibility states
summary_visible = False
relevant_visible = False
# Functions to toggle visibility
def toggle_summary_visibility():
global summary_visible
summary_visible = not summary_visible
return gr.update(visible=summary_visible)
def toggle_relevant_visibility():
global relevant_visible
relevant_visible = not relevant_visible
return gr.update(visible=relevant_visible)
def change_completion_status(current_state):
current_state = 1 - current_state
return current_state
def update_sources_number_display(sources_textbox, figures_cards, current_graphs, papers_html):
sources_number = sources_textbox.count("<h2>")
figures_number = figures_cards.count("<h2>")
graphs_number = current_graphs.count("<iframe")
papers_number = papers_html.count("<h2>")
sources_notif_label = f"Sources ({sources_number})"
figures_notif_label = f"Figures ({figures_number})"
graphs_notif_label = f"Graphs ({graphs_number})"
papers_notif_label = f"Papers ({papers_number})"
recommended_content_notif_label = f"Recommended content ({figures_number + graphs_number + papers_number})"
return gr.update(label = recommended_content_notif_label), gr.update(label = sources_notif_label), gr.update(label = figures_notif_label), gr.update(label = graphs_notif_label), gr.update(label = papers_notif_label)
(textbox
.submit(start_chat, [textbox,chatbot], [textbox,tabs,chatbot],queue = False,api_name = "start_chat_textbox")
.then(chat, [textbox,chatbot,dropdown_audience, dropdown_sources,dropdown_reports, dropdown_external_sources] ,[chatbot,sources_textbox,output_query,output_language, sources_raw, current_graphs],concurrency_limit = 8,api_name = "chat_textbox")
.then(finish_chat, None, [textbox],api_name = "finish_chat_textbox")
# .then(update_sources_number_display, [sources_textbox, figures_cards, current_graphs,papers_html],[tab_sources, tab_figures, tab_graphs, tab_papers] )
)
(examples_hidden
.change(start_chat, [examples_hidden,chatbot], [textbox,tabs,chatbot],queue = False,api_name = "start_chat_examples")
.then(chat, [examples_hidden,chatbot,dropdown_audience, dropdown_sources,dropdown_reports, dropdown_external_sources] ,[chatbot,sources_textbox,output_query,output_language, sources_raw, current_graphs],concurrency_limit = 8,api_name = "chat_textbox")
.then(finish_chat, None, [textbox],api_name = "finish_chat_examples")
# .then(update_sources_number_display, [sources_textbox, figures_cards, current_graphs,papers_html],[tab_sources, tab_figures, tab_graphs, tab_papers] )
)
def change_sample_questions(key):
index = list(QUESTIONS.keys()).index(key)
visible_bools = [False] * len(samples)
visible_bools[index] = True
return [gr.update(visible=visible_bools[i]) for i in range(len(samples))]
sources_raw.change(process_figures, inputs=[sources_raw], outputs=[figures_cards, gallery_component])
# update sources numbers
sources_textbox.change(update_sources_number_display, [sources_textbox, figures_cards, current_graphs,papers_html],[tab_recommended_content, tab_sources, tab_figures, tab_graphs, tab_papers])
figures_cards.change(update_sources_number_display, [sources_textbox, figures_cards, current_graphs,papers_html],[tab_recommended_content, tab_sources, tab_figures, tab_graphs, tab_papers])
current_graphs.change(update_sources_number_display, [sources_textbox, figures_cards, current_graphs,papers_html],[tab_recommended_content, tab_sources, tab_figures, tab_graphs, tab_papers])
papers_html.change(update_sources_number_display, [sources_textbox, figures_cards, current_graphs,papers_html],[tab_recommended_content, tab_sources, tab_figures, tab_graphs, tab_papers])
# other questions examples
dropdown_samples.change(change_sample_questions,dropdown_samples,samples)
# search for papers
textbox.submit(find_papers,[textbox,after, dropdown_external_sources], [papers_html,citations_network,papers_summary])
examples_hidden.change(find_papers,[examples_hidden,after,dropdown_external_sources], [papers_html,citations_network,papers_summary])
# btn_summary.click(toggle_summary_visibility, outputs=summary_popup)
# btn_relevant_papers.click(toggle_relevant_visibility, outputs=relevant_popup)
demo.queue()
demo.launch(ssr_mode=False)
|