Spaces:
Runtime error
Runtime error
Esmail-AGumaan
commited on
Commit
•
01342fe
1
Parent(s):
f8b823c
Update encoder.py
Browse files- encoder.py +55 -55
encoder.py
CHANGED
@@ -1,56 +1,56 @@
|
|
1 |
-
import torch
|
2 |
-
from torch import nn
|
3 |
-
from torch.nn import functional as F
|
4 |
-
from
|
5 |
-
|
6 |
-
class VAE_Encoder(nn.Sequential):
|
7 |
-
def __init__(self):
|
8 |
-
super().__init__(
|
9 |
-
nn.Conv2d(3, 128, kernel_size=3, padding=1),
|
10 |
-
|
11 |
-
VAE_ResidualBlock(128, 128),
|
12 |
-
VAE_ResidualBlock(128, 128),
|
13 |
-
|
14 |
-
nn.Conv2d(128, 128, kernel_size=3, stride=2, padding=0),
|
15 |
-
|
16 |
-
VAE_ResidualBlock(128, 256),
|
17 |
-
VAE_ResidualBlock(256, 256),
|
18 |
-
|
19 |
-
nn.Conv2d(256, 256, kernel_size=3, stride=2, padding=0),
|
20 |
-
|
21 |
-
VAE_ResidualBlock(256, 512),
|
22 |
-
VAE_ResidualBlock(512, 512),
|
23 |
-
|
24 |
-
nn.Conv2d(512, 512, kernel_size=3, stride=2, padding=0),
|
25 |
-
|
26 |
-
VAE_ResidualBlock(512, 512),
|
27 |
-
VAE_ResidualBlock(512, 512),
|
28 |
-
VAE_ResidualBlock(512, 512),
|
29 |
-
VAE_AttentionBlock(512),
|
30 |
-
VAE_ResidualBlock(512, 512),
|
31 |
-
|
32 |
-
nn.GroupNorm(32, 512),
|
33 |
-
|
34 |
-
nn.SiLU(),
|
35 |
-
|
36 |
-
nn.Conv2d(512, 8, kernel_size=3, padding=1),
|
37 |
-
|
38 |
-
nn.Conv2d(8, 8, kernel_size=1, padding=0),
|
39 |
-
)
|
40 |
-
|
41 |
-
def forward(self, x, noise):
|
42 |
-
for module in self:
|
43 |
-
|
44 |
-
if getattr(module, 'stride', None) == (2, 2):
|
45 |
-
x = F.pad(x, (0, 1, 0, 1))
|
46 |
-
|
47 |
-
x = module(x)
|
48 |
-
mean, log_variance = torch.chunk(x, 2, dim=1)
|
49 |
-
log_variance = torch.clamp(log_variance, -30, 20)
|
50 |
-
variance = log_variance.exp()
|
51 |
-
stdev = variance.sqrt()
|
52 |
-
x = mean + stdev * noise
|
53 |
-
# Constant taken from: https://github.com/CompVis/stable-diffusion/blob/21f890f9da3cfbeaba8e2ac3c425ee9e998d5229/configs/stable-diffusion/v1-inference.yaml#L17C1-L17C1
|
54 |
-
x *= 0.18215
|
55 |
-
|
56 |
return x
|
|
|
1 |
+
import torch
|
2 |
+
from torch import nn
|
3 |
+
from torch.nn import functional as F
|
4 |
+
from decoder import VAE_AttentionBlock, VAE_ResidualBlock
|
5 |
+
|
6 |
+
class VAE_Encoder(nn.Sequential):
|
7 |
+
def __init__(self):
|
8 |
+
super().__init__(
|
9 |
+
nn.Conv2d(3, 128, kernel_size=3, padding=1),
|
10 |
+
|
11 |
+
VAE_ResidualBlock(128, 128),
|
12 |
+
VAE_ResidualBlock(128, 128),
|
13 |
+
|
14 |
+
nn.Conv2d(128, 128, kernel_size=3, stride=2, padding=0),
|
15 |
+
|
16 |
+
VAE_ResidualBlock(128, 256),
|
17 |
+
VAE_ResidualBlock(256, 256),
|
18 |
+
|
19 |
+
nn.Conv2d(256, 256, kernel_size=3, stride=2, padding=0),
|
20 |
+
|
21 |
+
VAE_ResidualBlock(256, 512),
|
22 |
+
VAE_ResidualBlock(512, 512),
|
23 |
+
|
24 |
+
nn.Conv2d(512, 512, kernel_size=3, stride=2, padding=0),
|
25 |
+
|
26 |
+
VAE_ResidualBlock(512, 512),
|
27 |
+
VAE_ResidualBlock(512, 512),
|
28 |
+
VAE_ResidualBlock(512, 512),
|
29 |
+
VAE_AttentionBlock(512),
|
30 |
+
VAE_ResidualBlock(512, 512),
|
31 |
+
|
32 |
+
nn.GroupNorm(32, 512),
|
33 |
+
|
34 |
+
nn.SiLU(),
|
35 |
+
|
36 |
+
nn.Conv2d(512, 8, kernel_size=3, padding=1),
|
37 |
+
|
38 |
+
nn.Conv2d(8, 8, kernel_size=1, padding=0),
|
39 |
+
)
|
40 |
+
|
41 |
+
def forward(self, x, noise):
|
42 |
+
for module in self:
|
43 |
+
|
44 |
+
if getattr(module, 'stride', None) == (2, 2):
|
45 |
+
x = F.pad(x, (0, 1, 0, 1))
|
46 |
+
|
47 |
+
x = module(x)
|
48 |
+
mean, log_variance = torch.chunk(x, 2, dim=1)
|
49 |
+
log_variance = torch.clamp(log_variance, -30, 20)
|
50 |
+
variance = log_variance.exp()
|
51 |
+
stdev = variance.sqrt()
|
52 |
+
x = mean + stdev * noise
|
53 |
+
# Constant taken from: https://github.com/CompVis/stable-diffusion/blob/21f890f9da3cfbeaba8e2ac3c425ee9e998d5229/configs/stable-diffusion/v1-inference.yaml#L17C1-L17C1
|
54 |
+
x *= 0.18215
|
55 |
+
|
56 |
return x
|