Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
File size: 14,470 Bytes
d551fc8 c8e0175 d551fc8 e22c7b1 f123b98 6a85a81 c8e0175 d551fc8 55a6bd8 d551fc8 4135c81 d551fc8 7b52ef0 2788caf d551fc8 21b6daa d551fc8 e3302f1 d551fc8 7b52ef0 cceb9c7 d551fc8 7b52ef0 21b6daa d551fc8 e3302f1 71de22d d551fc8 fd577be d551fc8 21b6daa 94abe53 8118f8d 94fd083 8118f8d 94fd083 b88f1e8 9e1ae23 d551fc8 5a0ec90 52b7f30 9c2fca9 52b7f30 9e1ae23 d551fc8 9c2fca9 d551fc8 55a6bd8 9c2fca9 55a6bd8 9c2fca9 55a6bd8 9c2fca9 55a6bd8 52b7f30 9c2fca9 d551fc8 52b7f30 e3302f1 aa3820f e3302f1 aa3820f e3302f1 71de22d 4fa711d d551fc8 55a6bd8 30488e6 55a6bd8 d551fc8 e3302f1 f123b98 71de22d 343d08b a272945 6a85a81 3089c42 6a85a81 a272945 3089c42 a272945 3089c42 2788caf a272945 c8e0175 a272945 2788caf 343d08b b88f1e8 343d08b fd82343 a272945 21b6daa 94fd083 8118f8d 94fd083 c8bd695 f73005b 5a0ec90 c8bd695 5a0ec90 e7fe5d8 5a0ec90 05fcf5b 21b6daa e7fe5d8 5a0ec90 21b6daa 806b350 5a0ec90 806b350 21b6daa 5a0ec90 806b350 5a0ec90 867f2d7 5dbafb0 867f2d7 784ae4f c8e0175 6f41b63 e22c7b1 e6dc9fc 867f2d7 e6dc9fc 867f2d7 e6dc9fc 3089c42 5d7d815 21b6daa 4bcd90c 920d9b8 4bcd90c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 |
"""
Page for similarities
"""
################
# DEPENDENCIES #
################
import streamlit as st
import pandas as pd
from scipy.sparse import load_npz
import pickle
from sentence_transformers import SentenceTransformer
from modules.multimatch_result_table import show_multi_table
from modules.singlematch_result_table import show_single_table
from functions.filter_projects import filter_projects
from functions.filter_single import filter_single
from functions.calc_matches import calc_matches
from functions.same_country_filter import same_country_filter
from functions.single_similar import find_similar
import psutil
import os
import gc
def get_process_memory():
process = psutil.Process(os.getpid())
return process.memory_info().rss / (1024 * 1024)
# Catch DATA
# Load Similarity matrix
@st.cache_data
def load_sim_matrix():
loaded_matrix = load_npz("src/extended_similarities.npz")
dense_matrix = loaded_matrix.toarray()
return dense_matrix
# Load Non Similar Orga Matrix
@st.cache_data
def load_nonsameorga_sim_matrix():
loaded_matrix = load_npz("src/extended_similarities_nonsimorga.npz")
dense_matrix = loaded_matrix.toarray()
return dense_matrix
# Load Projects DFs
@st.cache_data
def load_projects():
orgas_df = pd.read_csv("src/projects/project_orgas.csv")
region_df = pd.read_csv("src/projects/project_region.csv")
sector_df = pd.read_csv("src/projects/project_sector.csv")
status_df = pd.read_csv("src/projects/project_status.csv")
texts_df = pd.read_csv("src/projects/project_texts.csv")
projects_df = pd.merge(orgas_df, region_df, on='iati_id', how='inner')
projects_df = pd.merge(projects_df, sector_df, on='iati_id', how='inner')
projects_df = pd.merge(projects_df, status_df, on='iati_id', how='inner')
projects_df = pd.merge(projects_df, texts_df, on='iati_id', how='inner')
iati_search_list = [f'{row.iati_id}' for row in projects_df.itertuples()]
title_search_list = [f'{row.title_main} ({row.orga_abbreviation.upper()})' for row in projects_df.itertuples()]
return projects_df, iati_search_list, title_search_list
# Load CRS 3 data
@st.cache_data
def getCRS3():
# Read in CRS3 CODELISTS
crs3_df = pd.read_csv('src/codelists/crs3_codes.csv')
CRS3_CODES = crs3_df['code'].tolist()
CRS3_NAME = crs3_df['name'].tolist()
CRS3_MERGED = {f"{name} - {code}": code for name, code in zip(CRS3_NAME, CRS3_CODES)}
return CRS3_MERGED
# Load CRS 5 data
@st.cache_data
def getCRS5():
# Read in CRS3 CODELISTS
crs5_df = pd.read_csv('src/codelists/crs5_codes.csv')
CRS5_CODES = crs5_df['code'].tolist()
CRS5_NAME = crs5_df['name'].tolist()
CRS5_MERGED = {code: [f"{name} - {code}"] for name, code in zip(CRS5_NAME, CRS5_CODES)}
return CRS5_MERGED
# Load SDG data
@st.cache_data
def getSDG():
# Read in SDG CODELISTS
sdg_df = pd.read_csv('src/codelists/sdg_goals.csv')
SDG_NAMES = sdg_df['name'].tolist()
return SDG_NAMES
# Load Country Data
@st.cache_data
def getCountry():
# Read in countries from codelist
country_df = pd.read_csv('src/codelists/country_codes_ISO3166-1alpha-2.csv')
COUNTRY_CODES = country_df['Alpha-2 code'].tolist()
COUNTRY_NAMES = country_df['Country'].tolist()
COUNTRY_OPTION_LIST = [f"{COUNTRY_NAMES[i]} ({COUNTRY_CODES[i][-3:-1].upper()})"for i in range(len(COUNTRY_NAMES))]
return COUNTRY_OPTION_LIST
# Load Sentence Transformer Model
@st.cache_resource
def load_model():
model = SentenceTransformer('all-MiniLM-L6-v2')
return model
# Load Embeddings
@st.cache_data
def load_embeddings_and_index():
# Load embeddings
with open("src/embeddings.pkl", "rb") as fIn:
stored_data = pickle.load(fIn)
embeddings = stored_data["embeddings"]
return embeddings
# USE CACHE FUNCTIONS
sim_matrix = load_sim_matrix()
nonsameorgas_sim_matrix = load_nonsameorga_sim_matrix()
projects_df, iati_search_list, title_search_list = load_projects()
CRS3_MERGED = getCRS3()
CRS5_MERGED = getCRS5()
SDG_NAMES = getSDG()
COUNTRY_OPTION_LIST = getCountry()
# LOAD MODEL FROM CACHE FO SEMANTIC SEARCH
model = load_model()
embeddings = load_embeddings_and_index()
def show_multi_matching_page():
#st.write(f"Current RAM usage of this app: {get_process_memory():.2f} MB")
#st.write(" ")
with st.expander("Explanation"):
st.caption("""
The Multi-Project Matching Feature uncovers synergy opportunities among various development banks and organizations by facilitating the search for
similar projects within a selected filter setting. This innovative tool leverages an AI-driven similarity score to compare all available projects
against those meeting the filter criteria, identifying potential matches that may not directly qualify under the selected filter settings.
It integrates projects listed in the IATI database from leading organizations, including BMZ, KfW, GIZ, IAD, ADB, AfDB, EIB, WB, WBTF, and the German
Federal Foreign Office (AA), offering a comprehensive platform for enhancing collaboration and maximizing the impact of development efforts.
""")
#st.write("----------------------")
col1, col2, col3 = st.columns([10, 1, 10])
with col1:
st.subheader("Sector Filters (required)")
st.caption("""
Sector filters must be applied to see results. The CRS5 and CRS3 classifications organise development aid into categories,
with the 5-digit level providing more specific detail within the broader 3-digit categories.
The SDGs are 17 UN goals that aim to achieve global sustainability, peace and prosperity by 2030. Futhermore you can Search for projects with the query field.
""")
with col3:
st.subheader("Additional Filters")
st.caption("""
The additional filters allow for a more detailed search for the Multi-Project Matching.
""")
st.session_state.crs5_option_disabled = True
col1, col2, col3 = st.columns([10, 1, 10])
with col1:
# CRS 3 SELECTION
crs3_option = st.multiselect(
'CRS 3',
CRS3_MERGED,
placeholder="Select a CRS 3 code"
)
# CRS 5 SELECTION
## Only enable crs5 select field when crs3 code is selected
if crs3_option != []:
st.session_state.crs5_option_disabled = False
## define list of crs5 codes dependend on crs3 codes
crs5_list = [txt[0].replace('"', "") for crs3_item in crs3_option for code, txt in CRS5_MERGED.items() if str(code)[:3] == str(crs3_item)[-3:]]
## crs5 select field
crs5_option = st.multiselect(
'CRS 5',
crs5_list,
placeholder="Select a CRS 5 code",
disabled=st.session_state.crs5_option_disabled
)
# SDG SELECTION
sdg_option = st.selectbox(
label = 'Sustainable Development Goal (SDG)',
index = None,
placeholder = "Select a SDG",
options = SDG_NAMES[:-1],
)
# SEARCH BOX
query = st.text_input("Search Query")
with col3:
# COUNTRY SELECTION
country_option = st.multiselect(
'Country / Countries',
COUNTRY_OPTION_LIST,
placeholder="All countries selected"
)
# ORGA SELECTION
orga_abbreviation = projects_df["orga_abbreviation"].unique()
orga_full_names = projects_df["orga_full_name"].unique()
orga_list = [f"{orga_full_names[i]} ({orga_abbreviation[i].upper()})"for i in range(len(orga_abbreviation))]
orga_option = st.multiselect(
'Development Bank / Organization',
orga_list,
placeholder="All organizations selected"
)
different_orga_checkbox = st.checkbox("Only matches between different organizations", value=True)
filterd_country_only_checkbox = st.checkbox("Only matches between filtered countries", value=True)
# CRS CODE LIST
crs3_list = [i[-3:] for i in crs3_option]
crs5_list = [i[-5:] for i in crs5_option]
# SDG CODE LIST
if sdg_option != None:
sdg_str = sdg_option.split(".")[0]
print(sdg_str)
else:
sdg_str = ""
# COUNTRY CODES LIST
country_code_list = [option[-3:-1] for option in country_option]
# ORGANIZATION CODES LIST
orga_code_list = [option.split("(")[1][:-1].lower() for option in orga_option]
# FILTER DF WITH SELECTED FILTER OPTIONS
TOP_X_PROJECTS = 30
filtered_df = filter_projects(projects_df, crs3_list, crs5_list, sdg_str, country_code_list, orga_code_list, query, model, embeddings, TOP_X_PROJECTS)
if isinstance(filtered_df, pd.DataFrame) and len(filtered_df) != 0:
# FIND MATCHES
## If only same country checkbox i sactivated
if filterd_country_only_checkbox:
with st.spinner('Please wait...'):
compare_df = same_country_filter(projects_df, country_code_list)
else:
compare_df = projects_df
## if show only different orgas checkbox is activated
if different_orga_checkbox:
with st.spinner('Please wait...'):
p1_df, p2_df = calc_matches(filtered_df, compare_df, nonsameorgas_sim_matrix, TOP_X_PROJECTS)
else:
with st.spinner('Please wait...'):
p1_df, p2_df = calc_matches(filtered_df, compare_df, sim_matrix, TOP_X_PROJECTS)
# SHOW THE RESULT
show_multi_table(p1_df, p2_df)
del p1_df, p2_df
else:
st.write("-----")
col1, col2, col3 = st.columns([1, 1, 1])
with col2:
st.write(" ")
st.markdown("<span style='color: red'>There are no results for the applied filter. Try another filter!</span>", unsafe_allow_html=True)
del crs3_list, crs5_list, sdg_str, filtered_df
gc.collect()
def show_single_matching_page():
with st.expander("Explanation"):
st.caption("""
Single Project Matching empowers you to choose an individual project using either the project IATI ID or title, and then unveils the top 10 projects
that bear the closest resemblance to your selected one. This selection is refined using a sophisticated AI algorithm that evaluates similarity based
on several key dimensions: Sustainable Development Goals (SDG), Creditor Reporting System (CRS) codes, and textual analysis of project titles and
descriptions.
""")
#st.write("---------")
col1, col2 = st.columns([11, 20])
with col1:
st.subheader("Select a reference project")
st.caption("""
Select a reference project either by its title or IATI ID to find the 10 projects most similar to it.
""")
with col2:
st.subheader("Filters for similar projects")
st.caption("""
The filters are applied to find the similar projects and are independend of the selected reference project.
""")
col1, col2, col3, col4 = st.columns([10, 1, 10, 10])
with col1:
search_option = st.selectbox(
label = 'Search with project title or IATI ID',
index = 0,
placeholder = " ",
options = ["Search with IATI ID", "Search with project title"],
)
if search_option == "Search with IATI ID":
search_list = iati_search_list
else:
search_list = title_search_list
project_option = st.selectbox(
label = 'Search for a project',
index = None,
placeholder = " ",
options = search_list,
)
with col3:
# ORGA SELECTION
orga_abbreviation = projects_df["orga_abbreviation"].unique()
orga_full_names = projects_df["orga_full_name"].unique()
orga_list = [f"{orga_full_names[i]} ({orga_abbreviation[i].upper()})"for i in range(len(orga_abbreviation))]
orga_option_s = st.multiselect(
'Development Bank / Organization ',
orga_list,
placeholder="All organizations selected "
)
different_orga_checkbox_s = st.checkbox("Only matches between different organizations ", value=True)
with col4:
# COUNTRY SELECTION
country_option_s = st.multiselect(
'Country / Countries ',
COUNTRY_OPTION_LIST,
placeholder="All countries selected "
)
st.write("--------------")
#selected_index = None
if project_option:
selected_project_index = search_list.index(project_option)
# COUNTRY CODES LIST
country_code_list = [option[-3:-1] for option in country_option_s]
# ORGANIZATION CODES LIST
orga_code_list = [option.split("(")[1][:-1].lower() for option in orga_option_s]
TOP_X_PROJECTS = 10
with st.spinner('Please wait...'):
filtered_df_s = filter_single(projects_df, country_code_list, orga_code_list)
if isinstance(filtered_df_s, pd.DataFrame) and len(filtered_df_s) != 0:
if different_orga_checkbox_s:
with st.spinner('Please wait...'):
top_projects_df = find_similar(selected_project_index, nonsameorgas_sim_matrix, filtered_df_s, 10)
else:
with st.spinner('Please wait...'):
top_projects_df = find_similar(selected_project_index, sim_matrix, filtered_df_s, 10)
show_single_table(selected_project_index, projects_df, top_projects_df)
else:
st.write("-----")
col1, col2, col3 = st.columns([1, 1, 1])
with col2:
st.write(" ")
st.markdown("<span style='color: red'>Ther are no results for this filter!</span>", unsafe_allow_html=True)
|