Spaces:
Runtime error
Runtime error
import time | |
import yaml | |
import tiktoken | |
import torch | |
import torch.nn.functional as F | |
from math import log, exp | |
from transformers import LogitsProcessor, LogitsProcessorList | |
from modules import shared | |
from modules.text_generation import encode, decode, generate_reply | |
from extensions.openai.defaults import get_default_req_params, default, clamp | |
from extensions.openai.utils import end_line, debug_msg | |
from extensions.openai.errors import * | |
# Thanks to @Cypherfox [Cypherfoxy] for the logits code, blame to @matatonic | |
class LogitsBiasProcessor(LogitsProcessor): | |
def __init__(self, logit_bias={}): | |
self.logit_bias = logit_bias | |
if self.logit_bias: | |
self.keys = list([int(key) for key in self.logit_bias.keys()]) | |
values = [ self.logit_bias[str(key)] for key in self.keys ] | |
self.values = torch.tensor(values, dtype=torch.float, device=shared.model.device) | |
debug_msg(f"{self})") | |
def __call__(self, input_ids: torch.LongTensor, logits: torch.FloatTensor) -> torch.FloatTensor: | |
if self.logit_bias: | |
debug_msg(logits[0, self.keys], " + ", self.values) | |
logits[0, self.keys] += self.values | |
debug_msg(" --> ", logits[0, self.keys]) | |
debug_msg(" max/min ", float(torch.max(logits[0])), float(torch.min(logits[0]))) | |
return logits | |
def __repr__(self): | |
return f"<{self.__class__.__name__}(logit_bias={self.logit_bias})>" | |
class LogprobProcessor(LogitsProcessor): | |
def __init__(self, logprobs=None): | |
self.logprobs = logprobs | |
self.token_alternatives = {} | |
def __call__(self, input_ids: torch.LongTensor, logits: torch.FloatTensor) -> torch.FloatTensor: | |
if self.logprobs is not None: # 0-5 | |
log_e_probabilities = F.log_softmax(logits, dim=1) | |
top_values, top_indices = torch.topk(log_e_probabilities, k=self.logprobs+1) | |
top_tokens = [ decode(tok) for tok in top_indices[0] ] | |
top_probs = [ float(x) for x in top_values[0] ] | |
self.token_alternatives = dict(zip(top_tokens, top_probs)) | |
debug_msg(f"{self.__class__.__name__}(logprobs+1={self.logprobs+1}, token_alternatives={self.token_alternatives})") | |
return logits | |
def __repr__(self): | |
return f"<{self.__class__.__name__}(logprobs={self.logprobs}, token_alternatives={self.token_alternatives})>" | |
def convert_logprobs_to_tiktoken(model, logprobs): | |
# more problems than it's worth. | |
# try: | |
# encoder = tiktoken.encoding_for_model(model) | |
# # just pick the first one if it encodes to multiple tokens... 99.9% not required and maybe worse overall. | |
# return dict([(encoder.decode([encoder.encode(token)[0]]), prob) for token, prob in logprobs.items()]) | |
# except KeyError: | |
# # assume native tokens if we can't find the tokenizer | |
return logprobs | |
def marshal_common_params(body): | |
# Request Parameters | |
# Try to use openai defaults or map them to something with the same intent | |
req_params = get_default_req_params() | |
# Common request parameters | |
req_params['truncation_length'] = shared.settings['truncation_length'] | |
req_params['add_bos_token'] = shared.settings.get('add_bos_token', req_params['add_bos_token']) | |
req_params['seed'] = shared.settings.get('seed', req_params['seed']) | |
req_params['custom_stopping_strings'] = shared.settings['custom_stopping_strings'] | |
# OpenAI API Parameters | |
# model - ignored for now, TODO: When we can reliably load a model or lora from a name only change this | |
req_params['requested_model'] = body.get('model', shared.model_name) | |
req_params['suffix'] = default(body, 'suffix', req_params['suffix']) | |
req_params['temperature'] = clamp(default(body, 'temperature', req_params['temperature']), 0.01, 1.99) # fixup absolute 0.0/2.0 | |
req_params['top_p'] = clamp(default(body, 'top_p', req_params['top_p']), 0.01, 1.0) | |
n = default(body, 'n', 1) | |
if n != 1: | |
raise InvalidRequestError(message="Only n = 1 is supported.", param='n') | |
if 'stop' in body: # str or array, max len 4 (ignored) | |
if isinstance(body['stop'], str): | |
req_params['stopping_strings'] = [body['stop']] # non-standard parameter | |
elif isinstance(body['stop'], list): | |
req_params['stopping_strings'] = body['stop'] | |
# presence_penalty - ignored | |
# frequency_penalty - ignored | |
# pass through unofficial params | |
req_params['repetition_penalty'] = default(body, 'repetition_penalty', req_params['repetition_penalty']) | |
req_params['encoder_repetition_penalty'] = default(body, 'encoder_repetition_penalty', req_params['encoder_repetition_penalty']) | |
# user - ignored | |
logits_processor = [] | |
logit_bias = body.get('logit_bias', None) | |
if logit_bias: # {str: float, ...} | |
# XXX convert tokens from tiktoken based on requested model | |
# Ex.: 'logit_bias': {'1129': 100, '11442': 100, '16243': 100} | |
try: | |
encoder = tiktoken.encoding_for_model(req_params['requested_model']) | |
new_logit_bias = {} | |
for logit, bias in logit_bias.items(): | |
for x in encode(encoder.decode([int(logit)]), add_special_tokens=False)[0]: | |
if int(x) in [0, 1, 2, 29871]: # XXX LLAMA tokens | |
continue | |
new_logit_bias[str(int(x))] = bias | |
debug_msg('logit_bias_map', logit_bias, '->', new_logit_bias) | |
logit_bias = new_logit_bias | |
except KeyError: | |
pass # assume native tokens if we can't find the tokenizer | |
logits_processor = [LogitsBiasProcessor(logit_bias)] | |
logprobs = None # coming to chat eventually | |
if 'logprobs' in body: | |
logprobs = default(body, 'logprobs', 0) # maybe cap at topk? don't clamp 0-5. | |
req_params['logprob_proc'] = LogprobProcessor(logprobs) | |
logits_processor.extend([req_params['logprob_proc']]) | |
else: | |
logprobs = None | |
if logits_processor: # requires logits_processor support | |
req_params['logits_processor'] = LogitsProcessorList(logits_processor) | |
return req_params | |
def messages_to_prompt(body: dict, req_params: dict, max_tokens): | |
# functions | |
if body.get('functions', []): # chat only | |
raise InvalidRequestError(message="functions is not supported.", param='functions') | |
if body.get('function_call', ''): # chat only, 'none', 'auto', {'name': 'func'} | |
raise InvalidRequestError(message="function_call is not supported.", param='function_call') | |
if not 'messages' in body: | |
raise InvalidRequestError(message="messages is required", param='messages') | |
messages = body['messages'] | |
role_formats = { | |
'user': 'User: {message}\n', | |
'assistant': 'Assistant: {message}\n', | |
'system': '{message}', | |
'context': 'You are a helpful assistant. Answer as concisely as possible.\nUser: I want your assistance.\nAssistant: Sure! What can I do for you?', | |
'prompt': 'Assistant:', | |
} | |
if not 'stopping_strings' in req_params: | |
req_params['stopping_strings'] = [] | |
# Instruct models can be much better | |
if shared.settings['instruction_template']: | |
try: | |
instruct = yaml.safe_load(open(f"characters/instruction-following/{shared.settings['instruction_template']}.yaml", 'r')) | |
template = instruct['turn_template'] | |
system_message_template = "{message}" | |
system_message_default = instruct.get('context', '') # can be missing | |
bot_start = template.find('<|bot|>') # So far, 100% of instruction templates have this token | |
user_message_template = template[:bot_start].replace('<|user-message|>', '{message}').replace('<|user|>', instruct.get('user', '')) | |
bot_message_template = template[bot_start:].replace('<|bot-message|>', '{message}').replace('<|bot|>', instruct.get('bot', '')) | |
bot_prompt = bot_message_template[:bot_message_template.find('{message}')].rstrip(' ') | |
role_formats = { | |
'user': user_message_template, | |
'assistant': bot_message_template, | |
'system': system_message_template, | |
'context': system_message_default, | |
'prompt': bot_prompt, | |
} | |
if 'Alpaca' in shared.settings['instruction_template']: | |
req_params['stopping_strings'].extend(['\n###']) | |
elif instruct['user']: # WizardLM and some others have no user prompt. | |
req_params['stopping_strings'].extend(['\n' + instruct['user'], instruct['user']]) | |
debug_msg(f"Loaded instruction role format: {shared.settings['instruction_template']}") | |
except Exception as e: | |
req_params['stopping_strings'].extend(['\nUser:', 'User:']) # XXX User: prompt here also | |
print(f"Exception: When loading characters/instruction-following/{shared.settings['instruction_template']}.yaml: {repr(e)}") | |
print("Warning: Loaded default instruction-following template for model.") | |
else: | |
req_params['stopping_strings'].extend(['\nUser:', 'User:']) # XXX User: prompt here also | |
print("Warning: Loaded default instruction-following template for model.") | |
system_msgs = [] | |
chat_msgs = [] | |
# You are ChatGPT, a large language model trained by OpenAI. Answer as concisely as possible. Knowledge cutoff: {knowledge_cutoff} Current date: {current_date} | |
context_msg = role_formats['system'].format(message=role_formats['context']) if role_formats['context'] else '' | |
context_msg = end_line(context_msg) | |
# Maybe they sent both? This is not documented in the API, but some clients seem to do this. | |
if 'prompt' in body: | |
context_msg = end_line(role_formats['system'].format(message=body['prompt'])) + context_msg | |
for m in messages: | |
if 'role' not in m: | |
raise InvalidRequestError(message="messages: missing role", param='messages') | |
if 'content' not in m: | |
raise InvalidRequestError(message="messages: missing content", param='messages') | |
role = m['role'] | |
content = m['content'] | |
# name = m.get('name', None) | |
# function_call = m.get('function_call', None) # user name or function name with output in content | |
msg = role_formats[role].format(message=content) | |
if role == 'system': | |
system_msgs.extend([msg]) | |
elif role == 'function': | |
raise InvalidRequestError(message="role: function is not supported.", param='messages') | |
else: | |
chat_msgs.extend([msg]) | |
system_msg = '\n'.join(system_msgs) | |
system_msg = end_line(system_msg) | |
prompt = system_msg + context_msg + ''.join(chat_msgs) + role_formats['prompt'] | |
token_count = len(encode(prompt)[0]) | |
if token_count >= req_params['truncation_length']: | |
err_msg = f"This model maximum context length is {req_params['truncation_length']} tokens. However, your messages resulted in over {token_count} tokens." | |
raise InvalidRequestError(message=err_msg, param='messages') | |
if max_tokens > 0 and token_count + max_tokens > req_params['truncation_length']: | |
err_msg = f"This model maximum context length is {req_params['truncation_length']} tokens. However, your messages resulted in over {token_count} tokens and max_tokens is {max_tokens}." | |
print(f"Warning: ${err_msg}") | |
# raise InvalidRequestError(message=err_msg, params='max_tokens') | |
return prompt, token_count | |
def chat_completions(body: dict, is_legacy: bool = False) -> dict: | |
# Chat Completions | |
object_type = 'chat.completions' | |
created_time = int(time.time()) | |
cmpl_id = "chatcmpl-%d" % (int(time.time() * 1000000000)) | |
resp_list = 'data' if is_legacy else 'choices' | |
# common params | |
req_params = marshal_common_params(body) | |
req_params['stream'] = False | |
requested_model = req_params.pop('requested_model') | |
logprob_proc = req_params.pop('logprob_proc', None) | |
req_params['top_k'] = 20 # There is no best_of/top_k param for chat, but it is much improved with a higher top_k. | |
# chat default max_tokens is 'inf', but also flexible | |
max_tokens = 0 | |
max_tokens_str = 'length' if is_legacy else 'max_tokens' | |
if max_tokens_str in body: | |
max_tokens = default(body, max_tokens_str, req_params['truncation_length']) | |
req_params['max_new_tokens'] = max_tokens | |
else: | |
req_params['max_new_tokens'] = req_params['truncation_length'] | |
# format the prompt from messages | |
prompt, token_count = messages_to_prompt(body, req_params, max_tokens) | |
# set real max, avoid deeper errors | |
if req_params['max_new_tokens'] + token_count >= req_params['truncation_length']: | |
req_params['max_new_tokens'] = req_params['truncation_length'] - token_count | |
# generate reply ####################################### | |
debug_msg({'prompt': prompt, 'req_params': req_params}) | |
stopping_strings = req_params.pop('stopping_strings', []) | |
logprob_proc = req_params.pop('logprob_proc', None) | |
generator = generate_reply(prompt, req_params, stopping_strings=stopping_strings, is_chat=False) | |
answer = '' | |
for a in generator: | |
answer = a | |
# strip extra leading space off new generated content | |
if answer and answer[0] == ' ': | |
answer = answer[1:] | |
completion_token_count = len(encode(answer)[0]) | |
stop_reason = "stop" | |
if token_count + completion_token_count >= req_params['truncation_length'] or completion_token_count >= req_params['max_new_tokens']: | |
stop_reason = "length" | |
resp = { | |
"id": cmpl_id, | |
"object": object_type, | |
"created": created_time, | |
"model": shared.model_name, # TODO: add Lora info? | |
resp_list: [{ | |
"index": 0, | |
"finish_reason": stop_reason, | |
"message": {"role": "assistant", "content": answer} | |
}], | |
"usage": { | |
"prompt_tokens": token_count, | |
"completion_tokens": completion_token_count, | |
"total_tokens": token_count + completion_token_count | |
} | |
} | |
if logprob_proc: # not official for chat yet | |
top_logprobs = convert_logprobs_to_tiktoken(model=requested_model, logprobs=logprob_proc.token_alternatives) | |
resp[resp_list][0]["logprobs"] = {'top_logprobs': [top_logprobs]} | |
# else: | |
# resp[resp_list][0]["logprobs"] = None | |
return resp | |
# generator | |
def stream_chat_completions(body: dict, is_legacy: bool = False): | |
# Chat Completions | |
stream_object_type = 'chat.completions.chunk' | |
created_time = int(time.time()) | |
cmpl_id = "chatcmpl-%d" % (int(time.time() * 1000000000)) | |
resp_list = 'data' if is_legacy else 'choices' | |
# common params | |
req_params = marshal_common_params(body) | |
req_params['stream'] = True | |
requested_model = req_params.pop('requested_model') | |
logprob_proc = req_params.pop('logprob_proc', None) | |
req_params['top_k'] = 20 # There is no best_of/top_k param for chat, but it is much improved with a higher top_k. | |
# chat default max_tokens is 'inf', but also flexible | |
max_tokens = 0 | |
max_tokens_str = 'length' if is_legacy else 'max_tokens' | |
if max_tokens_str in body: | |
max_tokens = default(body, max_tokens_str, req_params['truncation_length']) | |
req_params['max_new_tokens'] = max_tokens | |
else: | |
req_params['max_new_tokens'] = req_params['truncation_length'] | |
# format the prompt from messages | |
prompt, token_count = messages_to_prompt(body, req_params, max_tokens) | |
# set real max, avoid deeper errors | |
if req_params['max_new_tokens'] + token_count >= req_params['truncation_length']: | |
req_params['max_new_tokens'] = req_params['truncation_length'] - token_count | |
def chat_streaming_chunk(content): | |
# begin streaming | |
chunk = { | |
"id": cmpl_id, | |
"object": stream_object_type, | |
"created": created_time, | |
"model": shared.model_name, | |
resp_list: [{ | |
"index": 0, | |
"finish_reason": None, | |
# So yeah... do both methods? delta and messages. | |
"message": {'role': 'assistant', 'content': content}, | |
"delta": {'role': 'assistant', 'content': content}, | |
}], | |
} | |
if logprob_proc: # not official for chat yet | |
top_logprobs = convert_logprobs_to_tiktoken(model=requested_model, logprobs=logprob_proc.token_alternatives) | |
chunk[resp_list][0]["logprobs"] = {'top_logprobs': [top_logprobs]} | |
# else: | |
# chunk[resp_list][0]["logprobs"] = None | |
return chunk | |
yield chat_streaming_chunk('') | |
# generate reply ####################################### | |
debug_msg({'prompt': prompt, 'req_params': req_params}) | |
stopping_strings = req_params.pop('stopping_strings', []) | |
generator = generate_reply(prompt, req_params, stopping_strings=stopping_strings, is_chat=False) | |
answer = '' | |
seen_content = '' | |
completion_token_count = 0 | |
for a in generator: | |
answer = a | |
len_seen = len(seen_content) | |
new_content = answer[len_seen:] | |
if not new_content or chr(0xfffd) in new_content: # partial unicode character, don't send it yet. | |
continue | |
seen_content = answer | |
# strip extra leading space off new generated content | |
if len_seen == 0 and new_content[0] == ' ': | |
new_content = new_content[1:] | |
chunk = chat_streaming_chunk(new_content) | |
yield chunk | |
# to get the correct token_count, strip leading space if present | |
if answer and answer[0] == ' ': | |
answer = answer[1:] | |
completion_token_count = len(encode(answer)[0]) | |
stop_reason = "stop" | |
if token_count + completion_token_count >= req_params['truncation_length'] or completion_token_count >= req_params['max_new_tokens']: | |
stop_reason = "length" | |
chunk = chat_streaming_chunk('') | |
chunk[resp_list][0]['finish_reason'] = stop_reason | |
chunk['usage'] = { | |
"prompt_tokens": token_count, | |
"completion_tokens": completion_token_count, | |
"total_tokens": token_count + completion_token_count | |
} | |
yield chunk | |
def completions(body: dict, is_legacy: bool = False): | |
# Legacy | |
# Text Completions | |
object_type = 'text_completion' | |
created_time = int(time.time()) | |
cmpl_id = "conv-%d" % (int(time.time() * 1000000000)) | |
resp_list = 'data' if is_legacy else 'choices' | |
# ... encoded as a string, array of strings, array of tokens, or array of token arrays. | |
prompt_str = 'context' if is_legacy else 'prompt' | |
if not prompt_str in body: | |
raise InvalidRequestError("Missing required input", param=prompt_str) | |
prompt = body[prompt_str] | |
if isinstance(prompt, list): | |
if prompt and isinstance(prompt[0], int): | |
try: | |
encoder = tiktoken.encoding_for_model(requested_model) | |
prompt = encoder.decode(prompt) | |
except KeyError: | |
prompt = decode(prompt)[0] | |
else: | |
raise InvalidRequestError(message="API Batched generation not yet supported.", param=prompt_str) | |
# common params | |
req_params = marshal_common_params(body) | |
req_params['stream'] = False | |
max_tokens_str = 'length' if is_legacy else 'max_tokens' | |
max_tokens = default(body, max_tokens_str, req_params['max_new_tokens']) | |
req_params['max_new_tokens'] = max_tokens | |
requested_model = req_params.pop('requested_model') | |
logprob_proc = req_params.pop('logprob_proc', None) | |
token_count = len(encode(prompt)[0]) | |
if token_count + max_tokens > req_params['truncation_length']: | |
err_msg = f"The token count of your prompt ({token_count}) plus max_tokens ({max_tokens}) cannot exceed the model's context length ({req_params['truncation_length']})." | |
# print(f"Warning: ${err_msg}") | |
raise InvalidRequestError(message=err_msg, param=max_tokens_str) | |
req_params['echo'] = default(body, 'echo', req_params['echo']) | |
req_params['top_k'] = default(body, 'best_of', req_params['top_k']) | |
# generate reply ####################################### | |
debug_msg({'prompt': prompt, 'req_params': req_params}) | |
stopping_strings = req_params.pop('stopping_strings', []) | |
generator = generate_reply(prompt, req_params, stopping_strings=stopping_strings, is_chat=False) | |
answer = '' | |
for a in generator: | |
answer = a | |
# strip extra leading space off new generated content | |
if answer and answer[0] == ' ': | |
answer = answer[1:] | |
completion_token_count = len(encode(answer)[0]) | |
stop_reason = "stop" | |
if token_count + completion_token_count >= req_params['truncation_length'] or completion_token_count >= max_tokens: | |
stop_reason = "length" | |
resp = { | |
"id": cmpl_id, | |
"object": object_type, | |
"created": created_time, | |
"model": shared.model_name, # TODO: add Lora info? | |
resp_list: [{ | |
"index": 0, | |
"finish_reason": stop_reason, | |
"text": answer, | |
}], | |
"usage": { | |
"prompt_tokens": token_count, | |
"completion_tokens": completion_token_count, | |
"total_tokens": token_count + completion_token_count | |
} | |
} | |
if logprob_proc and logprob_proc.token_alternatives: | |
top_logprobs = convert_logprobs_to_tiktoken(model=requested_model, logprobs=logprob_proc.token_alternatives) | |
resp[resp_list][0]["logprobs"] = {'top_logprobs': [top_logprobs]} | |
else: | |
resp[resp_list][0]["logprobs"] = None | |
return resp | |
# generator | |
def stream_completions(body: dict, is_legacy: bool = False): | |
# Legacy | |
# Text Completions | |
# object_type = 'text_completion' | |
stream_object_type = 'text_completion.chunk' | |
created_time = int(time.time()) | |
cmpl_id = "conv-%d" % (int(time.time() * 1000000000)) | |
resp_list = 'data' if is_legacy else 'choices' | |
# ... encoded as a string, array of strings, array of tokens, or array of token arrays. | |
prompt_str = 'context' if is_legacy else 'prompt' | |
if not prompt_str in body: | |
raise InvalidRequestError("Missing required input", param=prompt_str) | |
prompt = body[prompt_str] | |
if isinstance(prompt, list): | |
if prompt and isinstance(prompt[0], int): | |
try: | |
encoder = tiktoken.encoding_for_model(requested_model) | |
prompt = encoder.decode(prompt) | |
except KeyError: | |
prompt = decode(prompt)[0] | |
else: | |
raise InvalidRequestError(message="API Batched generation not yet supported.", param=prompt_str) | |
# common params | |
req_params = marshal_common_params(body) | |
req_params['stream'] = True | |
max_tokens_str = 'length' if is_legacy else 'max_tokens' | |
max_tokens = default(body, max_tokens_str, req_params['max_new_tokens']) | |
req_params['max_new_tokens'] = max_tokens | |
requested_model = req_params.pop('requested_model') | |
logprob_proc = req_params.pop('logprob_proc', None) | |
token_count = len(encode(prompt)[0]) | |
if token_count + max_tokens > req_params['truncation_length']: | |
err_msg = f"The token count of your prompt ({token_count}) plus max_tokens ({max_tokens}) cannot exceed the model's context length ({req_params['truncation_length']})." | |
# print(f"Warning: ${err_msg}") | |
raise InvalidRequestError(message=err_msg, param=max_tokens_str) | |
req_params['echo'] = default(body, 'echo', req_params['echo']) | |
req_params['top_k'] = default(body, 'best_of', req_params['top_k']) | |
def text_streaming_chunk(content): | |
# begin streaming | |
chunk = { | |
"id": cmpl_id, | |
"object": stream_object_type, | |
"created": created_time, | |
"model": shared.model_name, | |
resp_list: [{ | |
"index": 0, | |
"finish_reason": None, | |
"text": content, | |
}], | |
} | |
if logprob_proc: | |
top_logprobs = convert_logprobs_to_tiktoken(model=requested_model, logprobs=logprob_proc.token_alternatives) | |
chunk[resp_list][0]["logprobs"] = {'top_logprobs': [top_logprobs]} | |
else: | |
chunk[resp_list][0]["logprobs"] = None | |
return chunk | |
yield text_streaming_chunk('') | |
# generate reply ####################################### | |
debug_msg({'prompt': prompt, 'req_params': req_params}) | |
stopping_strings = req_params.pop('stopping_strings', []) | |
logprob_proc = req_params.pop('logprob_proc', None) | |
generator = generate_reply(prompt, req_params, stopping_strings=stopping_strings, is_chat=False) | |
answer = '' | |
seen_content = '' | |
completion_token_count = 0 | |
for a in generator: | |
answer = a | |
len_seen = len(seen_content) | |
new_content = answer[len_seen:] | |
if not new_content or chr(0xfffd) in new_content: # partial unicode character, don't send it yet. | |
continue | |
seen_content = answer | |
# strip extra leading space off new generated content | |
if len_seen == 0 and new_content[0] == ' ': | |
new_content = new_content[1:] | |
chunk = text_streaming_chunk(new_content) | |
yield chunk | |
# to get the correct count, we strip the leading space if present | |
if answer and answer[0] == ' ': | |
answer = answer[1:] | |
completion_token_count = len(encode(answer)[0]) | |
stop_reason = "stop" | |
if token_count + completion_token_count >= req_params['truncation_length'] or completion_token_count >= max_tokens: | |
stop_reason = "length" | |
chunk = text_streaming_chunk('') | |
chunk[resp_list][0]["finish_reason"] = stop_reason | |
chunk["usage"] = { | |
"prompt_tokens": token_count, | |
"completion_tokens": completion_token_count, | |
"total_tokens": token_count + completion_token_count | |
} | |
yield chunk | |