Delete app.py
#1
by
ankitdwivedi31
- opened
app.py
DELETED
@@ -1,75 +0,0 @@
|
|
1 |
-
import torch
|
2 |
-
import gradio as gr
|
3 |
-
import pandas as pd
|
4 |
-
import matplotlib.pyplot as plt
|
5 |
-
|
6 |
-
# Use a pipeline as a high-level helper
|
7 |
-
from transformers import pipeline
|
8 |
-
# model_path = ("../Models/models--distilbert--distilbert-base-uncased-finetuned-sst-2-english"
|
9 |
-
# "/snapshots/714eb0fa89d2f80546fda750413ed43d93601a13")
|
10 |
-
|
11 |
-
analyzer = pipeline("text-classification",
|
12 |
-
model="distilbert/distilbert-base-uncased-finetuned-sst-2-english")
|
13 |
-
|
14 |
-
# analyzer = pipeline("text-classification",
|
15 |
-
# model=model_path)
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
# print(analyzer(["This production is good", "This product was quite expensive"]))
|
20 |
-
|
21 |
-
def sentiment_analyzer(review):
|
22 |
-
sentiment = analyzer(review)
|
23 |
-
return sentiment[0]['label']
|
24 |
-
|
25 |
-
def sentiment_bar_chart(df):
|
26 |
-
sentiment_counts = df['Sentiment'].value_counts()
|
27 |
-
|
28 |
-
# Create a bar chart
|
29 |
-
fig, ax = plt.subplots()
|
30 |
-
sentiment_counts.plot(kind='pie', ax=ax, autopct='%1.1f%%', color=['green', 'red'])
|
31 |
-
ax.set_title('Review Sentiment Counts')
|
32 |
-
ax.set_xlabel('Sentiment')
|
33 |
-
ax.set_ylabel('Count')
|
34 |
-
# ax.set_xticklabels(['Positive', 'Negative'], rotation=0)
|
35 |
-
|
36 |
-
# Return the figure object
|
37 |
-
return fig
|
38 |
-
|
39 |
-
|
40 |
-
def read_reviews_and_analyze_sentiment(file_object):
|
41 |
-
# Load the Excel file into a DataFrame
|
42 |
-
df = pd.read_excel(file_object)
|
43 |
-
|
44 |
-
# Check if 'Review' column is in the DataFrame
|
45 |
-
if 'Reviews' not in df.columns:
|
46 |
-
raise ValueError("Excel file must contain a 'Review' column.")
|
47 |
-
|
48 |
-
# Apply the get_sentiment function to each review in the DataFrame
|
49 |
-
df['Sentiment'] = df['Reviews'].apply(sentiment_analyzer)
|
50 |
-
chart_object = sentiment_bar_chart(df)
|
51 |
-
return df, chart_object
|
52 |
-
|
53 |
-
# result = read_reviews_and_analyze_sentiment("../Files/Prod-review.xlsx")
|
54 |
-
# print(result)
|
55 |
-
# Example usage:
|
56 |
-
# df = read_reviews_and_analyze_sentiment('path_to_your_excel_file.xlsx')
|
57 |
-
# print(df)
|
58 |
-
|
59 |
-
|
60 |
-
demo = gr.Interface(fn=read_reviews_and_analyze_sentiment,
|
61 |
-
inputs=[gr.File(file_types=["xlsx"], label="Upload your review comment file")],
|
62 |
-
outputs=[gr.Dataframe(label="Sentiments"), gr.Plot(label="Sentiment Analysis")],
|
63 |
-
title="@GenAILearniverse Project 3: Sentiment Analyzer",
|
64 |
-
description="THIS APPLICATION WILL BE USED TO ANALYZE THE SENTIMENT BASED ON FILE UPLAODED.")
|
65 |
-
demo.launch()
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
# Example usage:
|
73 |
-
# Assuming you have a dataframe `df` with appropriate data
|
74 |
-
# fig = sentiment_bar_chart(df)
|
75 |
-
# fig.show() # This line is just to visualize the plot in a local environment
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|