Files changed (1) hide show
  1. app.py +0 -75
app.py DELETED
@@ -1,75 +0,0 @@
1
- import torch
2
- import gradio as gr
3
- import pandas as pd
4
- import matplotlib.pyplot as plt
5
-
6
- # Use a pipeline as a high-level helper
7
- from transformers import pipeline
8
- # model_path = ("../Models/models--distilbert--distilbert-base-uncased-finetuned-sst-2-english"
9
- # "/snapshots/714eb0fa89d2f80546fda750413ed43d93601a13")
10
-
11
- analyzer = pipeline("text-classification",
12
- model="distilbert/distilbert-base-uncased-finetuned-sst-2-english")
13
-
14
- # analyzer = pipeline("text-classification",
15
- # model=model_path)
16
-
17
-
18
-
19
- # print(analyzer(["This production is good", "This product was quite expensive"]))
20
-
21
- def sentiment_analyzer(review):
22
- sentiment = analyzer(review)
23
- return sentiment[0]['label']
24
-
25
- def sentiment_bar_chart(df):
26
- sentiment_counts = df['Sentiment'].value_counts()
27
-
28
- # Create a bar chart
29
- fig, ax = plt.subplots()
30
- sentiment_counts.plot(kind='pie', ax=ax, autopct='%1.1f%%', color=['green', 'red'])
31
- ax.set_title('Review Sentiment Counts')
32
- ax.set_xlabel('Sentiment')
33
- ax.set_ylabel('Count')
34
- # ax.set_xticklabels(['Positive', 'Negative'], rotation=0)
35
-
36
- # Return the figure object
37
- return fig
38
-
39
-
40
- def read_reviews_and_analyze_sentiment(file_object):
41
- # Load the Excel file into a DataFrame
42
- df = pd.read_excel(file_object)
43
-
44
- # Check if 'Review' column is in the DataFrame
45
- if 'Reviews' not in df.columns:
46
- raise ValueError("Excel file must contain a 'Review' column.")
47
-
48
- # Apply the get_sentiment function to each review in the DataFrame
49
- df['Sentiment'] = df['Reviews'].apply(sentiment_analyzer)
50
- chart_object = sentiment_bar_chart(df)
51
- return df, chart_object
52
-
53
- # result = read_reviews_and_analyze_sentiment("../Files/Prod-review.xlsx")
54
- # print(result)
55
- # Example usage:
56
- # df = read_reviews_and_analyze_sentiment('path_to_your_excel_file.xlsx')
57
- # print(df)
58
-
59
-
60
- demo = gr.Interface(fn=read_reviews_and_analyze_sentiment,
61
- inputs=[gr.File(file_types=["xlsx"], label="Upload your review comment file")],
62
- outputs=[gr.Dataframe(label="Sentiments"), gr.Plot(label="Sentiment Analysis")],
63
- title="@GenAILearniverse Project 3: Sentiment Analyzer",
64
- description="THIS APPLICATION WILL BE USED TO ANALYZE THE SENTIMENT BASED ON FILE UPLAODED.")
65
- demo.launch()
66
-
67
-
68
-
69
-
70
-
71
-
72
- # Example usage:
73
- # Assuming you have a dataframe `df` with appropriate data
74
- # fig = sentiment_bar_chart(df)
75
- # fig.show() # This line is just to visualize the plot in a local environment