Spaces:
Runtime error
Runtime error
#!/usr/bin/env python | |
import os,sys,glob,torch,random | |
import numpy as np | |
import argparse | |
try: | |
import pyrosetta | |
pyrosetta.init() | |
APPROX = False | |
except: | |
print("WARNING: pyRosetta not found, will use an approximate SSE calculation") | |
APPROX = True | |
def main(): | |
args=get_args() | |
assert args.input_pdb or args.pdb_dir is not None, 'Need to provide either an input pdb (--input_pdb) or a path to pdbs (--pdb_dir)' | |
assert not (args.input_pdb is not None and args.pdb_dir is not None), 'Need to provide either --input_pdb or --pdb_dir, not both' | |
os.makedirs(args.out_dir, exist_ok=True) | |
if args.pdb_dir is not None: | |
pdbs=glob.glob(f'{args.pdb_dir}/*pdb') | |
else: | |
pdbs=[args.input_pdb] | |
for pdb in pdbs: | |
name=os.path.split(pdb)[1][:-4] | |
secstruc_dict=extract_secstruc(pdb) | |
xyz,_,_ = parse_pdb_torch(pdb) | |
ss, idx = ss_to_tensor(secstruc_dict) | |
block_adj = construct_block_adj_matrix(torch.FloatTensor(ss), torch.tensor(xyz)).float() | |
ss_tens, mask = mask_ss(ss, idx, max_mask=0) | |
ss_argmax = torch.argmax(ss_tens[:,:4], dim=1).float() | |
torch.save(ss_argmax, os.path.join(args.out_dir, f'{name}_ss.pt')) | |
torch.save(block_adj, os.path.join(args.out_dir, f'{name}_adj.pt')) | |
def get_args(): | |
parser = argparse.ArgumentParser(formatter_class=argparse.ArgumentDefaultsHelpFormatter) | |
parser.add_argument("--pdb_dir",required=False, help="path to directory of pdbs. Either pass this or the path to a specific pdb (--input_pdb)", default=None) | |
parser.add_argument("--input_pdb", required=False, help="path to input pdb. Either provide this of path to directory of pdbs (--pdb_dir)", default=None) | |
parser.add_argument("--out_dir",dest="out_dir", required=True, help='need to specify an output path') | |
args = parser.parse_args() | |
return args | |
def extract_secstruc(fn): | |
pdb=parse_pdb(fn) | |
idx = pdb['idx'] | |
if APPROX: | |
aa_sequence = pdb["seq"] | |
secstruct = get_sse(pdb["xyz"][:,1]) | |
else: | |
dssp = pyrosetta.rosetta.core.scoring.dssp | |
pose = pyrosetta.io.pose_from_pdb(fn) | |
dssp.Dssp(pose).insert_ss_into_pose(pose, True) | |
aa_sequence = pose.sequence() | |
secstruct = pose.secstruct() | |
secstruc_dict = {'sequence':[i for i in aa_sequence], | |
'idx':[int(i) for i in idx], | |
'ss':[i for i in secstruct]} | |
return secstruc_dict | |
def ss_to_tensor(ss): | |
""" | |
Function to convert ss files to indexed tensors | |
0 = Helix | |
1 = Strand | |
2 = Loop | |
3 = Mask/unknown | |
4 = idx for pdb | |
""" | |
ss_conv = {'H':0,'E':1,'L':2} | |
idx = np.array(ss['idx']) | |
ss_int = np.array([int(ss_conv[i]) for i in ss['ss']]) | |
return ss_int, idx | |
def mask_ss(ss, idx, min_mask = 0, max_mask = 1.0): | |
mask_prop = random.uniform(min_mask, max_mask) | |
transitions = np.where(ss[:-1] - ss[1:] != 0)[0] #gets last index of each block of ss | |
stuck_counter = 0 | |
while len(ss[ss == 3])/len(ss) < mask_prop or stuck_counter > 100: | |
width = random.randint(1,9) | |
start = random.choice(transitions) | |
offset = random.randint(-8,1) | |
try: | |
ss[start+offset:start+offset+width] = 3 | |
except: | |
stuck_counter += 1 | |
pass | |
ss = torch.tensor(ss) | |
ss = torch.nn.functional.one_hot(ss, num_classes=4) | |
ss = torch.cat((ss, torch.tensor(idx)[...,None]), dim=-1) | |
# mask = torch.where(torch.argmax(ss[:,:-1], dim=-1) == 3, False, True) | |
mask=torch.tensor(np.where(np.argmax(ss[:,:-1].numpy(), axis=-1) == 3)) | |
return ss, mask | |
def generate_Cbeta(N,Ca,C): | |
# recreate Cb given N,Ca,C | |
b = Ca - N | |
c = C - Ca | |
a = torch.cross(b, c, dim=-1) | |
#Cb = -0.58273431*a + 0.56802827*b - 0.54067466*c + Ca | |
# fd: below matches sidechain generator (=Rosetta params) | |
Cb = -0.57910144*a + 0.5689693*b - 0.5441217*c + Ca | |
return Cb | |
def get_pair_dist(a, b): | |
"""calculate pair distances between two sets of points | |
Parameters | |
---------- | |
a,b : pytorch tensors of shape [batch,nres,3] | |
store Cartesian coordinates of two sets of atoms | |
Returns | |
------- | |
dist : pytorch tensor of shape [batch,nres,nres] | |
stores paitwise distances between atoms in a and b | |
""" | |
dist = torch.cdist(a, b, p=2) | |
return dist | |
def construct_block_adj_matrix( sstruct, xyz, cutoff=6, include_loops=False ): | |
''' | |
Given a sstruct specification and backbone coordinates, build a block adjacency matrix. | |
Input: | |
sstruct (torch.FloatTensor): (L) length tensor with numeric encoding of sstruct at each position | |
xyz (torch.FloatTensor): (L,3,3) tensor of Cartesian coordinates of backbone N,Ca,C atoms | |
cutoff (float): The Cb distance cutoff under which residue pairs are considered adjacent | |
By eye, Nate thinks 6A is a good Cb distance cutoff | |
Output: | |
block_adj (torch.FloatTensor): (L,L) boolean matrix where adjacent secondary structure contacts are 1 | |
''' | |
L = xyz.shape[0] | |
# three anchor atoms | |
N = xyz[:,0] | |
Ca = xyz[:,1] | |
C = xyz[:,2] | |
# recreate Cb given N,Ca,C | |
Cb = generate_Cbeta(N,Ca,C) | |
# May need a batch dimension - NRB | |
dist = get_pair_dist(Cb,Cb) # [L,L] | |
dist[torch.isnan(dist)] = 999.9 | |
dist += 999.9*torch.eye(L,device=xyz.device) | |
# Now we have dist matrix and sstruct specification, turn this into a block adjacency matrix | |
# There is probably a way to do this in closed-form with a beautiful einsum but I am going to do the loop approach | |
# First: Construct a list of segments and the index at which they begin and end | |
in_segment = True | |
segments = [] | |
begin = -1 | |
end = -1 | |
for i in range(sstruct.shape[0]): | |
# Starting edge case | |
if i == 0: | |
begin = 0 | |
continue | |
if not sstruct[i] == sstruct[i-1]: | |
end = i | |
segments.append( (sstruct[i-1], begin, end) ) | |
begin = i | |
# Ending edge case: last segment is length one | |
if not end == sstruct.shape[0]: | |
segments.append( (sstruct[-1], begin, sstruct.shape[0]) ) | |
block_adj = torch.zeros_like(dist) | |
for i in range(len(segments)): | |
curr_segment = segments[i] | |
if curr_segment[0] == 2 and not include_loops: continue | |
begin_i = curr_segment[1] | |
end_i = curr_segment[2] | |
for j in range(i+1, len(segments)): | |
j_segment = segments[j] | |
if j_segment[0] == 2 and not include_loops: continue | |
begin_j = j_segment[1] | |
end_j = j_segment[2] | |
if torch.any( dist[begin_i:end_i, begin_j:end_j] < cutoff ): | |
# Matrix is symmetic | |
block_adj[begin_i:end_i, begin_j:end_j] = torch.ones(end_i - begin_i, end_j - begin_j) | |
block_adj[begin_j:end_j, begin_i:end_i] = torch.ones(end_j - begin_j, end_i - begin_i) | |
return block_adj | |
def parse_pdb_torch(filename): | |
lines = open(filename,'r').readlines() | |
return parse_pdb_lines_torch(lines) | |
#''' | |
def parse_pdb_lines_torch(lines): | |
# indices of residues observed in the structure | |
pdb_idx = [] | |
for l in lines: | |
if l[:4]=="ATOM" and l[12:16].strip()=="CA": | |
idx = ( l[21:22].strip(), int(l[22:26].strip()) ) | |
if idx not in pdb_idx: | |
pdb_idx.append(idx) | |
# 4 BB + up to 10 SC atoms | |
xyz = np.full((len(pdb_idx), 27, 3), np.nan, dtype=np.float32) | |
for l in lines: | |
if l[:4] != "ATOM": | |
continue | |
chain, resNo, atom, aa = l[21:22], int(l[22:26]), ' '+l[12:16].strip().ljust(3), l[17:20] | |
idx = pdb_idx.index((chain,resNo)) | |
for i_atm, tgtatm in enumerate(aa2long[aa2num[aa]]): | |
if tgtatm == atom: | |
xyz[idx,i_atm,:] = [float(l[30:38]), float(l[38:46]), float(l[46:54])] | |
break | |
# save atom mask | |
mask = np.logical_not(np.isnan(xyz[...,0])) | |
xyz[np.isnan(xyz[...,0])] = 0.0 | |
return xyz,mask,np.array(pdb_idx) | |
def parse_pdb(filename, **kwargs): | |
'''extract xyz coords for all heavy atoms''' | |
lines = open(filename,'r').readlines() | |
return parse_pdb_lines(lines, **kwargs) | |
def parse_pdb_lines(lines, parse_hetatom=False, ignore_het_h=True): | |
# indices of residues observed in the structure | |
res = [(l[22:26],l[17:20]) for l in lines if l[:4]=="ATOM" and l[12:16].strip()=="CA"] | |
seq = [aa2num[r[1]] if r[1] in aa2num.keys() else 20 for r in res] | |
pdb_idx = [( l[21:22].strip(), int(l[22:26].strip()) ) for l in lines if l[:4]=="ATOM" and l[12:16].strip()=="CA"] # chain letter, res num | |
# 4 BB + up to 10 SC atoms | |
xyz = np.full((len(res), 27, 3), np.nan, dtype=np.float32) | |
for l in lines: | |
if l[:4] != "ATOM": | |
continue | |
chain, resNo, atom, aa = l[21:22], int(l[22:26]), ' '+l[12:16].strip().ljust(3), l[17:20] | |
idx = pdb_idx.index((chain,resNo)) | |
for i_atm, tgtatm in enumerate(aa2long[aa2num[aa]]): | |
if tgtatm is not None and tgtatm.strip() == atom.strip(): # ignore whitespace | |
xyz[idx,i_atm,:] = [float(l[30:38]), float(l[38:46]), float(l[46:54])] | |
break | |
# save atom mask | |
mask = np.logical_not(np.isnan(xyz[...,0])) | |
xyz[np.isnan(xyz[...,0])] = 0.0 | |
# remove duplicated (chain, resi) | |
new_idx = [] | |
i_unique = [] | |
for i,idx in enumerate(pdb_idx): | |
if idx not in new_idx: | |
new_idx.append(idx) | |
i_unique.append(i) | |
pdb_idx = new_idx | |
xyz = xyz[i_unique] | |
mask = mask[i_unique] | |
seq = np.array(seq)[i_unique] | |
out = {'xyz':xyz, # cartesian coordinates, [Lx14] | |
'mask':mask, # mask showing which atoms are present in the PDB file, [Lx14] | |
'idx':np.array([i[1] for i in pdb_idx]), # residue numbers in the PDB file, [L] | |
'seq':np.array(seq), # amino acid sequence, [L] | |
'pdb_idx': pdb_idx, # list of (chain letter, residue number) in the pdb file, [L] | |
} | |
# heteroatoms (ligands, etc) | |
if parse_hetatom: | |
xyz_het, info_het = [], [] | |
for l in lines: | |
if l[:6]=='HETATM' and not (ignore_het_h and l[77]=='H'): | |
info_het.append(dict( | |
idx=int(l[7:11]), | |
atom_id=l[12:16], | |
atom_type=l[77], | |
name=l[16:20] | |
)) | |
xyz_het.append([float(l[30:38]), float(l[38:46]), float(l[46:54])]) | |
out['xyz_het'] = np.array(xyz_het) | |
out['info_het'] = info_het | |
return out | |
num2aa=[ | |
'ALA','ARG','ASN','ASP','CYS', | |
'GLN','GLU','GLY','HIS','ILE', | |
'LEU','LYS','MET','PHE','PRO', | |
'SER','THR','TRP','TYR','VAL', | |
'UNK','MAS', | |
] | |
aa2num= {x:i for i,x in enumerate(num2aa)} | |
# full sc atom representation (Nx14) | |
aa2long=[ | |
(" N "," CA "," C "," O "," CB ", None, None, None, None, None, None, None, None, None," H "," HA ","1HB ","2HB ","3HB ", None, None, None, None, None, None, None, None), # ala | |
(" N "," CA "," C "," O "," CB "," CG "," CD "," NE "," CZ "," NH1"," NH2", None, None, None," H "," HA ","1HB ","2HB ","1HG ","2HG ","1HD ","2HD "," HE ","1HH1","2HH1","1HH2","2HH2"), # arg | |
(" N "," CA "," C "," O "," CB "," CG "," OD1"," ND2", None, None, None, None, None, None," H "," HA ","1HB ","2HB ","1HD2","2HD2", None, None, None, None, None, None, None), # asn | |
(" N "," CA "," C "," O "," CB "," CG "," OD1"," OD2", None, None, None, None, None, None," H "," HA ","1HB ","2HB ", None, None, None, None, None, None, None, None, None), # asp | |
(" N "," CA "," C "," O "," CB "," SG ", None, None, None, None, None, None, None, None," H "," HA ","1HB ","2HB "," HG ", None, None, None, None, None, None, None, None), # cys | |
(" N "," CA "," C "," O "," CB "," CG "," CD "," OE1"," NE2", None, None, None, None, None," H "," HA ","1HB ","2HB ","1HG ","2HG ","1HE2","2HE2", None, None, None, None, None), # gln | |
(" N "," CA "," C "," O "," CB "," CG "," CD "," OE1"," OE2", None, None, None, None, None," H "," HA ","1HB ","2HB ","1HG ","2HG ", None, None, None, None, None, None, None), # glu | |
(" N "," CA "," C "," O ", None, None, None, None, None, None, None, None, None, None," H ","1HA ","2HA ", None, None, None, None, None, None, None, None, None, None), # gly | |
(" N "," CA "," C "," O "," CB "," CG "," ND1"," CD2"," CE1"," NE2", None, None, None, None," H "," HA ","1HB ","2HB "," HD2"," HE1"," HE2", None, None, None, None, None, None), # his | |
(" N "," CA "," C "," O "," CB "," CG1"," CG2"," CD1", None, None, None, None, None, None," H "," HA "," HB ","1HG2","2HG2","3HG2","1HG1","2HG1","1HD1","2HD1","3HD1", None, None), # ile | |
(" N "," CA "," C "," O "," CB "," CG "," CD1"," CD2", None, None, None, None, None, None," H "," HA ","1HB ","2HB "," HG ","1HD1","2HD1","3HD1","1HD2","2HD2","3HD2", None, None), # leu | |
(" N "," CA "," C "," O "," CB "," CG "," CD "," CE "," NZ ", None, None, None, None, None," H "," HA ","1HB ","2HB ","1HG ","2HG ","1HD ","2HD ","1HE ","2HE ","1HZ ","2HZ ","3HZ "), # lys | |
(" N "," CA "," C "," O "," CB "," CG "," SD "," CE ", None, None, None, None, None, None," H "," HA ","1HB ","2HB ","1HG ","2HG ","1HE ","2HE ","3HE ", None, None, None, None), # met | |
(" N "," CA "," C "," O "," CB "," CG "," CD1"," CD2"," CE1"," CE2"," CZ ", None, None, None," H "," HA ","1HB ","2HB "," HD1"," HD2"," HE1"," HE2"," HZ ", None, None, None, None), # phe | |
(" N "," CA "," C "," O "," CB "," CG "," CD ", None, None, None, None, None, None, None," HA ","1HB ","2HB ","1HG ","2HG ","1HD ","2HD ", None, None, None, None, None, None), # pro | |
(" N "," CA "," C "," O "," CB "," OG ", None, None, None, None, None, None, None, None," H "," HG "," HA ","1HB ","2HB ", None, None, None, None, None, None, None, None), # ser | |
(" N "," CA "," C "," O "," CB "," OG1"," CG2", None, None, None, None, None, None, None," H "," HG1"," HA "," HB ","1HG2","2HG2","3HG2", None, None, None, None, None, None), # thr | |
(" N "," CA "," C "," O "," CB "," CG "," CD1"," CD2"," NE1"," CE2"," CE3"," CZ2"," CZ3"," CH2"," H "," HA ","1HB ","2HB "," HD1"," HE1"," HZ2"," HH2"," HZ3"," HE3", None, None, None), # trp | |
(" N "," CA "," C "," O "," CB "," CG "," CD1"," CD2"," CE1"," CE2"," CZ "," OH ", None, None," H "," HA ","1HB ","2HB "," HD1"," HE1"," HE2"," HD2"," HH ", None, None, None, None), # tyr | |
(" N "," CA "," C "," O "," CB "," CG1"," CG2", None, None, None, None, None, None, None," H "," HA "," HB ","1HG1","2HG1","3HG1","1HG2","2HG2","3HG2", None, None, None, None), # val | |
(" N "," CA "," C "," O "," CB ", None, None, None, None, None, None, None, None, None," H "," HA ","1HB ","2HB ","3HB ", None, None, None, None, None, None, None, None), # unk | |
(" N "," CA "," C "," O "," CB ", None, None, None, None, None, None, None, None, None," H "," HA ","1HB ","2HB ","3HB ", None, None, None, None, None, None, None, None), # mask | |
] | |
def get_sse(ca_coord): | |
''' | |
calculates the SSE of a peptide chain based on the P-SEA algorithm (Labesse 1997) | |
code borrowed from biokite: https://github.com/biokit/biokit | |
''' | |
def vector_dot(v1,v2): return (v1*v2).sum(-1) | |
def norm_vector(v): return v / np.linalg.norm(v, axis=-1, keepdims=True) | |
def displacement(atoms1, atoms2): | |
v1 = np.asarray(atoms1) | |
v2 = np.asarray(atoms2) | |
if len(v1.shape) <= len(v2.shape): | |
diff = v2 - v1 | |
else: | |
diff = -(v1 - v2) | |
return diff | |
def distance(atoms1, atoms2): | |
diff = displacement(atoms1, atoms2) | |
return np.sqrt(vector_dot(diff, diff)) | |
def angle(atoms1, atoms2, atoms3): | |
v1 = norm_vector(displacement(atoms1, atoms2)) | |
v2 = norm_vector(displacement(atoms3, atoms2)) | |
return np.arccos(vector_dot(v1,v2)) | |
def dihedral(atoms1, atoms2, atoms3, atoms4): | |
v1 = norm_vector(displacement(atoms1, atoms2)) | |
v2 = norm_vector(displacement(atoms2, atoms3)) | |
v3 = norm_vector(displacement(atoms3, atoms4)) | |
n1 = np.cross(v1, v2) | |
n2 = np.cross(v2, v3) | |
# Calculation using atan2, to ensure the correct sign of the angle | |
x = vector_dot(n1,n2) | |
y = vector_dot(np.cross(n1,n2), v2) | |
return np.arctan2(y,x) | |
_radians_to_angle = 2*np.pi/360 | |
_r_helix = ((89-12)*_radians_to_angle, (89+12)*_radians_to_angle) | |
_a_helix = ((50-20)*_radians_to_angle, (50+20)*_radians_to_angle) | |
_d2_helix = ((5.5-0.5), (5.5+0.5)) | |
_d3_helix = ((5.3-0.5), (5.3+0.5)) | |
_d4_helix = ((6.4-0.6), (6.4+0.6)) | |
_r_strand = ((124-14)*_radians_to_angle, (124+14)*_radians_to_angle) | |
_a_strand = ((-180)*_radians_to_angle, (-125)*_radians_to_angle, | |
(145)*_radians_to_angle, (180)*_radians_to_angle) | |
_d2_strand = ((6.7-0.6), (6.7+0.6)) | |
_d3_strand = ((9.9-0.9), (9.9+0.9)) | |
_d4_strand = ((12.4-1.1), (12.4+1.1)) | |
# Filter all CA atoms in the relevant chain. | |
d2i_coord = np.full(( len(ca_coord), 2, 3 ), np.nan) | |
d3i_coord = np.full(( len(ca_coord), 2, 3 ), np.nan) | |
d4i_coord = np.full(( len(ca_coord), 2, 3 ), np.nan) | |
ri_coord = np.full(( len(ca_coord), 3, 3 ), np.nan) | |
ai_coord = np.full(( len(ca_coord), 4, 3 ), np.nan) | |
# The distances and angles are not defined for the entire interval, | |
# therefore the indices do not have the full range | |
# Values that are not defined are NaN | |
for i in range(1, len(ca_coord)-1): d2i_coord[i] = (ca_coord[i-1], ca_coord[i+1]) | |
for i in range(1, len(ca_coord)-2): d3i_coord[i] = (ca_coord[i-1], ca_coord[i+2]) | |
for i in range(1, len(ca_coord)-3): d4i_coord[i] = (ca_coord[i-1], ca_coord[i+3]) | |
for i in range(1, len(ca_coord)-1): ri_coord[i] = (ca_coord[i-1], ca_coord[i], ca_coord[i+1]) | |
for i in range(1, len(ca_coord)-2): ai_coord[i] = (ca_coord[i-1], ca_coord[i], ca_coord[i+1], ca_coord[i+2]) | |
d2i = distance(d2i_coord[:,0], d2i_coord[:,1]) | |
d3i = distance(d3i_coord[:,0], d3i_coord[:,1]) | |
d4i = distance(d4i_coord[:,0], d4i_coord[:,1]) | |
ri = angle(ri_coord[:,0], ri_coord[:,1], ri_coord[:,2]) | |
ai = dihedral(ai_coord[:,0], ai_coord[:,1], ai_coord[:,2], ai_coord[:,3]) | |
sse = ["L"] * len(ca_coord) | |
# Annotate helices | |
# Find CA that meet criteria for potential helices | |
is_pot_helix = np.zeros(len(sse), dtype=bool) | |
for i in range(len(sse)): | |
if ( | |
d3i[i] >= _d3_helix[0] and d3i[i] <= _d3_helix[1] | |
and d4i[i] >= _d4_helix[0] and d4i[i] <= _d4_helix[1] | |
) or ( | |
ri[i] >= _r_helix[0] and ri[i] <= _r_helix[1] | |
and ai[i] >= _a_helix[0] and ai[i] <= _a_helix[1] | |
): | |
is_pot_helix[i] = True | |
# Real helices are 5 consecutive helix elements | |
is_helix = np.zeros(len(sse), dtype=bool) | |
counter = 0 | |
for i in range(len(sse)): | |
if is_pot_helix[i]: | |
counter += 1 | |
else: | |
if counter >= 5: | |
is_helix[i-counter : i] = True | |
counter = 0 | |
# Extend the helices by one at each end if CA meets extension criteria | |
i = 0 | |
while i < len(sse): | |
if is_helix[i]: | |
sse[i] = "H" | |
if ( | |
d3i[i-1] >= _d3_helix[0] and d3i[i-1] <= _d3_helix[1] | |
) or ( | |
ri[i-1] >= _r_helix[0] and ri[i-1] <= _r_helix[1] | |
): | |
sse[i-1] = "H" | |
sse[i] = "H" | |
if ( | |
d3i[i+1] >= _d3_helix[0] and d3i[i+1] <= _d3_helix[1] | |
) or ( | |
ri[i+1] >= _r_helix[0] and ri[i+1] <= _r_helix[1] | |
): | |
sse[i+1] = "H" | |
i += 1 | |
# Annotate sheets | |
# Find CA that meet criteria for potential strands | |
is_pot_strand = np.zeros(len(sse), dtype=bool) | |
for i in range(len(sse)): | |
if ( d2i[i] >= _d2_strand[0] and d2i[i] <= _d2_strand[1] | |
and d3i[i] >= _d3_strand[0] and d3i[i] <= _d3_strand[1] | |
and d4i[i] >= _d4_strand[0] and d4i[i] <= _d4_strand[1] | |
) or ( | |
ri[i] >= _r_strand[0] and ri[i] <= _r_strand[1] | |
and ( (ai[i] >= _a_strand[0] and ai[i] <= _a_strand[1]) | |
or (ai[i] >= _a_strand[2] and ai[i] <= _a_strand[3])) | |
): | |
is_pot_strand[i] = True | |
# Real strands are 5 consecutive strand elements, | |
# or shorter fragments of at least 3 consecutive strand residues, | |
# if they are in hydrogen bond proximity to 5 other residues | |
pot_strand_coord = ca_coord[is_pot_strand] | |
is_strand = np.zeros(len(sse), dtype=bool) | |
counter = 0 | |
contacts = 0 | |
for i in range(len(sse)): | |
if is_pot_strand[i]: | |
counter += 1 | |
coord = ca_coord[i] | |
for strand_coord in ca_coord: | |
dist = distance(coord, strand_coord) | |
if dist >= 4.2 and dist <= 5.2: | |
contacts += 1 | |
else: | |
if counter >= 4: | |
is_strand[i-counter : i] = True | |
elif counter == 3 and contacts >= 5: | |
is_strand[i-counter : i] = True | |
counter = 0 | |
contacts = 0 | |
# Extend the strands by one at each end if CA meets extension criteria | |
i = 0 | |
while i < len(sse): | |
if is_strand[i]: | |
sse[i] = "E" | |
if d3i[i-1] >= _d3_strand[0] and d3i[i-1] <= _d3_strand[1]: | |
sse[i-1] = "E" | |
sse[i] = "E" | |
if d3i[i+1] >= _d3_strand[0] and d3i[i+1] <= _d3_strand[1]: | |
sse[i+1] = "E" | |
i += 1 | |
return sse | |
if __name__ == "__main__": | |
main() | |