document-qa / app.py
EdoAbati's picture
app basic structure
9a6f34b
raw
history blame
1.83 kB
import re
import gradio as gr
import requests
import xmltodict
from transformers import AutoModelForQuestionAnswering, AutoTokenizer, pipeline
from transformers.pipelines.question_answering import QuestionAnsweringPipeline
QA_MODEL_NAME = "ixa-ehu/SciBERT-SQuAD-QuAC"
def clean_text(text: str) -> str:
text = re.sub("\n", " ", text)
return text
def get_paper_summary(arxiv_id: str) -> str:
paper_url = f"http://export.arxiv.org/api/query?id_list={arxiv_id}"
response = requests.get(paper_url)
paper_dict = xmltodict.parse(response.content)["feed"]["entry"]
return clean_text(paper_dict["summary"])
def get_qa_pipeline(qa_model_name: str = QA_MODEL_NAME) -> QuestionAnsweringPipeline:
tokenizer = AutoTokenizer.from_pretrained(qa_model_name)
model = AutoModelForQuestionAnswering.from_pretrained(qa_model_name)
qa_pipeline = pipeline("question-answering", model=model, tokenizer=tokenizer)
return qa_pipeline
def get_answer(question: str, context: str) -> str:
qa_pipeline = get_qa_pipeline()
prediction = qa_pipeline(question=question, context=context)
return prediction["answer"]
demo = gr.Blocks()
with demo:
gr.Markdown("# Document QA")
# Retrieve paper
arxiv_id = gr.Textbox(
label="arXiv Paper ID", placeholder="Insert here the ID of a paper on arXiv"
)
paper_summary = gr.Textbox(label="Paper summary")
fetch_document_button = gr.Button("Get Summary")
fetch_document_button.click(
fn=get_paper_summary, inputs=arxiv_id, outputs=paper_summary
)
# QA on paper
question = gr.Textbox(label="Ask a question about the paper:")
answer = gr.Textbox("Answer:")
ask_button = gr.Button("Ask me 🤖")
ask_button.click(fn=get_answer, inputs=[question, paper_summary], outputs=answer)
demo.launch()