Spaces:
Running
Running
File size: 2,828 Bytes
59faeae 56266ec 039b503 d36a83c 2205ed4 56266ec 17ae5cb cb0409e 56266ec 17ae5cb c2d9b12 56266ec 17ae5cb 56266ec d36a83c 56266ec 2205ed4 56266ec 2205ed4 56266ec 2205ed4 9627035 56266ec |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 |
# import gradio as gr
import tensorflow as tf
import numpy as np
from keras.models import load_model
from tensorflow.keras.preprocessing.text import Tokenizer
import pickle
from tensorflow.keras.preprocessing.sequence import pad_sequences
import os
from pathlib import Path
import pandas as pd
import plotly.express as px
import keras
from underthesea import word_tokenize
from phoBERT import BERT_predict
#Load tokenizer
fp = Path(__file__).with_name('tokenizer.pkl')
with open(fp,mode="rb") as f:
tokenizer = pickle.load(f)
#Load LSTM
fp = Path(__file__).with_name('lstm_model.h5')
LSTM_model = load_model(fp)
#Load GRU
fp = Path(__file__).with_name('gru_model.h5')
GRU_model = load_model(fp)
def tokenizer_pad(tokenizer,comment_text,max_length=200):
comment_text = word_tokenize(comment_text, format="text")
comment_text = [comment_text]
tokenized_text = tokenizer.texts_to_sequences(comment_text)
padded_sequences = pad_sequences(sequences=tokenized_text,maxlen=max_length,padding="post",truncating="post")
return padded_sequences
def LSTM_predict(x):
x = tokenizer_pad(tokenizer=tokenizer,comment_text=x)
pred_proba = LSTM_model.predict(x)[0]
pred_proba = [round(i,2) for i in pred_proba]
#print(pred_proba)
return pred_proba
def GRU_predict(x):
x = tokenizer_pad(tokenizer=tokenizer,comment_text=x)
pred_proba = GRU_model.predict(x)[0]
pred_proba = [round(i,2) for i in pred_proba]
#print(pred_proba)
return pred_proba
def plot(result):
label = ['độc hại', 'cực kì độc hại', 'tục tĩu', 'đe dọa', 'xúc phạm', 'thù ghét cá nhân']
data = pd.DataFrame()
data['Nhãn'] = label
data['Điểm'] = result
#print(data)
p = px.bar(data, x='Nhãn', y='Điểm', color='Nhãn', range_y=[0, 1] )
return p
pass
def judge(x):
label = ['độc hại', 'cực kì độc hại', 'tục tĩu', 'đe dọa', 'xúc phạm', 'thù ghét cá nhân']
result = []
judge_result = []
lstm_pred = LSTM_predict(x)
gru_pred = GRU_predict(x)
bert_pred = BERT_predict(x)
#print(result)
return_result = 'Result'
result_lstm = np.round(lstm_pred, 2)
result_gru = np.round(gru_pred, 2)
result_bert = np.round(bert_pred, 2)
for i in range(6):
result.append((result_lstm[i]+result_gru[i]+result_bert[i])/3)
return (result)
# if __name__ == "__main__":
# # print("Loading")
# # while(True):
# # string = input("\nMời nhập văn bản: ")
# # os.system('cls')
# # print(f"Văn bản đã nhập: {string}")
# # judge(string)
# interface = gr.Interface(fn=judge,
# inputs=gr.Textbox(lines=2, placeholder='Please write something', label="Input Text"),
# outputs=['text','plot','text'])
# interface.launch() |