Spaces:
Runtime error
Runtime error
import streamlit as st | |
from transformers import pipeline | |
# Load the model pipeline | |
model = pipeline("audio-classification", model="HareemFatima/distilhubert-finetuned-stutterdetection") | |
# Streamlit app | |
def main(): | |
st.title("Stutter Classification App") | |
audio_input = st.audio("Capture Audio", format="audio/wav", start_recording=True, channels=1) | |
if st.button("Stop Recording"): | |
# Assuming the recording is saved as "recording.wav" | |
recording_path = "recording.wav" | |
# Call the model pipeline to classify the audio | |
prediction = model(recording_path) | |
# Get the predicted label | |
predicted_label = prediction[0]["label"] | |
# Map the label to the corresponding stutter type | |
if predicted_label == 0: | |
stutter_type = "nonstutter" | |
elif predicted_label == 1: | |
stutter_type = "prolongation" | |
elif predicted_label == 2: | |
stutter_type = "repetition" | |
elif predicted_label == 3: | |
stutter_type = "blocks" | |
else: | |
stutter_type = "Unknown" | |
st.write("Predicted Stutter Type:", stutter_type) | |
if __name__ == "__main__": | |
main() | |