Lokis's picture
Increase readability
cb4cc22 verified
import gradio as gr
import numpy as np
import io
from pydub import AudioSegment
import requests
from dataclasses import dataclass, field
from threading import Lock
import base64
import uuid
import json
import sseclient
import os
@dataclass
class AppState:
stream: np.ndarray | None = None
sampling_rate: int = 0
conversation: list = field(default_factory=list)
api_key: str = os.getenv("API_KEY", "")
output_format: str = "mp3"
url: str = "https://audio.herm.studio/v1/chat/completions"
# Global lock for thread safety
state_lock = Lock()
def process_audio(audio: tuple, state: AppState):
if state.stream is None:
state.stream = audio[1]
state.sampling_rate = audio[0]
else:
state.stream = np.concatenate((state.stream, audio[1]))
return state
def update_or_append_conversation(conversation, id, role, new_content):
for entry in conversation:
if entry["id"] == id and entry["role"] == role:
entry["content"] = new_content
return
conversation.append({"id": id, "role": role, "content": new_content})
def generate_response_and_audio(audio_bytes: bytes, state: AppState):
if not state.api_key:
raise gr.Error("Please enter a valid API key first.")
headers = {
"X-API-Key": state.api_key,
"Content-Type": "application/json"
}
audio_data = base64.b64encode(audio_bytes).decode()
old_messages = [{"role": item["role"], "content": item["content"]} for item in state.conversation]
old_messages.append({"role": "user", "content": [{"type": "audio", "data": audio_data}]})
data = {
"messages": old_messages,
"stream": True,
"max_tokens": 256
}
try:
response = requests.post(state.url, headers=headers, json=data, stream=True)
response.raise_for_status()
if response.status_code != 200:
raise gr.Error(f"API returned status code {response.status_code}")
client = sseclient.SSEClient(response)
full_response = ""
asr_result = ""
audio_chunks = []
id = uuid.uuid4()
for event in client.events():
if event.data == "[DONE]":
break
try:
chunk = json.loads(event.data)
except json.JSONDecodeError:
continue
if 'choices' not in chunk or not chunk['choices']:
continue
choice = chunk['choices'][0]
if 'delta' in choice and 'content' in choice['delta']:
content = choice['delta'].get('content')
if content is not None:
full_response += content
yield id, full_response, asr_result, None, state
if 'asr_results' in choice:
asr_result = "".join(choice['asr_results'])
yield id, full_response, asr_result, None, state
if 'audio' in choice:
if choice['audio'] is not None:
audio_chunks.extend(choice['audio'])
if audio_chunks:
try:
final_audio = b"".join([base64.b64decode(a) for a in audio_chunks])
yield id, full_response, asr_result, final_audio, state
except TypeError:
pass
if not full_response and not asr_result and not audio_chunks:
raise gr.Error("No valid response received from the API")
except requests.exceptions.RequestException as e:
raise gr.Error(f"Request failed: {str(e)}")
except Exception as e:
raise gr.Error(f"Error during audio streaming: {str(e)}")
def response(state: AppState):
if state.stream is None or len(state.stream) == 0:
return None, None, state
audio_buffer = io.BytesIO()
segment = AudioSegment(
state.stream.tobytes(),
frame_rate=state.sampling_rate,
sample_width=state.stream.dtype.itemsize,
channels=(1 if len(state.stream.shape) == 1 else state.stream.shape[1]),
)
segment.export(audio_buffer, format="wav")
generator = generate_response_and_audio(audio_buffer.getvalue(), state)
for id, text, asr, audio, updated_state in generator:
state = updated_state
if asr:
update_or_append_conversation(state.conversation, id, "user", asr)
if text:
update_or_append_conversation(state.conversation, id, "assistant", text)
chatbot_output = state.conversation
yield chatbot_output, audio, state
state.stream = None
def initial_setup(state):
if not state.api_key:
raise gr.Error("API key not found in environment variables. Please set the API_KEY environment variable.")
return gr.update(value="The API key used is supported by Herm studio", visible=True)
with gr.Blocks() as demo:
gr.Markdown("# LLM Voice Mode")
api_key_status = gr.Textbox(
show_label=False,
container=False,
interactive=False,
visible=True
)
with gr.Blocks():
with gr.Row():
input_audio = gr.Audio(
label="Input Audio",
sources="microphone",
type="numpy"
)
output_audio = gr.Audio(
label="Output Audio",
autoplay=True,
streaming=True
)
chatbot = gr.Chatbot(
label="Conversation",
type="messages"
)
state = gr.State(AppState())
demo.load(
fn=initial_setup,
inputs=state,
outputs=api_key_status
)
input_audio.stream(
fn=process_audio,
inputs=[input_audio, state],
outputs=[state],
stream_every=0.25,
time_limit=60
)
respond = input_audio.stop_recording(
fn=response,
inputs=[state],
outputs=[chatbot, output_audio, state]
)
respond.then(
fn=lambda s: s.conversation,
inputs=[state],
outputs=[chatbot]
)
demo.launch()