File size: 13,836 Bytes
efa09bd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
917e749
efa09bd
7a1ec93
 
efa09bd
917e749
 
 
 
efa09bd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
from typing import Any, Dict, List, Optional, Tuple, Union

import copy
import torch
from torch import nn, svd_lowrank

from peft.tuners.lora import LoraLayer, Conv2d as PeftConv2d
from diffusers.configuration_utils import register_to_config
from diffusers.models.unets.unet_2d_condition import UNet2DConditionOutput, UNet2DConditionModel as UNet2DConditionModel


class UNet2DConditionModelEx(UNet2DConditionModel):
    @register_to_config
    def __init__(
        self,
        sample_size: Optional[int] = None,
        in_channels: int = 4,
        out_channels: int = 4,
        center_input_sample: bool = False,
        flip_sin_to_cos: bool = True,
        freq_shift: int = 0,
        down_block_types: Tuple[str] = (
            "CrossAttnDownBlock2D",
            "CrossAttnDownBlock2D",
            "CrossAttnDownBlock2D",
            "DownBlock2D",
        ),
        mid_block_type: Optional[str] = "UNetMidBlock2DCrossAttn",
        up_block_types: Tuple[str] = ("UpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D"),
        only_cross_attention: Union[bool, Tuple[bool]] = False,
        block_out_channels: Tuple[int] = (320, 640, 1280, 1280),
        layers_per_block: Union[int, Tuple[int]] = 2,
        downsample_padding: int = 1,
        mid_block_scale_factor: float = 1,
        dropout: float = 0.0,
        act_fn: str = "silu",
        norm_num_groups: Optional[int] = 32,
        norm_eps: float = 1e-5,
        cross_attention_dim: Union[int, Tuple[int]] = 1280,
        transformer_layers_per_block: Union[int, Tuple[int], Tuple[Tuple]] = 1,
        reverse_transformer_layers_per_block: Optional[Tuple[Tuple[int]]] = None,
        encoder_hid_dim: Optional[int] = None,
        encoder_hid_dim_type: Optional[str] = None,
        attention_head_dim: Union[int, Tuple[int]] = 8,
        num_attention_heads: Optional[Union[int, Tuple[int]]] = None,
        dual_cross_attention: bool = False,
        use_linear_projection: bool = False,
        class_embed_type: Optional[str] = None,
        addition_embed_type: Optional[str] = None,
        addition_time_embed_dim: Optional[int] = None,
        num_class_embeds: Optional[int] = None,
        upcast_attention: bool = False,
        resnet_time_scale_shift: str = "default",
        resnet_skip_time_act: bool = False,
        resnet_out_scale_factor: float = 1.0,
        time_embedding_type: str = "positional",
        time_embedding_dim: Optional[int] = None,
        time_embedding_act_fn: Optional[str] = None,
        timestep_post_act: Optional[str] = None,
        time_cond_proj_dim: Optional[int] = None,
        conv_in_kernel: int = 3,
        conv_out_kernel: int = 3,
        projection_class_embeddings_input_dim: Optional[int] = None,
        attention_type: str = "default",
        class_embeddings_concat: bool = False,
        mid_block_only_cross_attention: Optional[bool] = None,
        cross_attention_norm: Optional[str] = None,
        addition_embed_type_num_heads: int = 64,
        extra_condition_names: List[str] = [],
    ):
        num_extra_conditions = len(extra_condition_names)
        super().__init__(
            sample_size=sample_size,
            in_channels=in_channels * (1 + num_extra_conditions),
            out_channels=out_channels,
            center_input_sample=center_input_sample,
            flip_sin_to_cos=flip_sin_to_cos,
            freq_shift=freq_shift,
            down_block_types=down_block_types,
            mid_block_type=mid_block_type,
            up_block_types=up_block_types,
            only_cross_attention=only_cross_attention,
            block_out_channels=block_out_channels,
            layers_per_block=layers_per_block,
            downsample_padding=downsample_padding,
            mid_block_scale_factor=mid_block_scale_factor,
            dropout=dropout,
            act_fn=act_fn,
            norm_num_groups=norm_num_groups,
            norm_eps=norm_eps,
            cross_attention_dim=cross_attention_dim,
            transformer_layers_per_block=transformer_layers_per_block,
            reverse_transformer_layers_per_block=reverse_transformer_layers_per_block,
            encoder_hid_dim=encoder_hid_dim,
            encoder_hid_dim_type=encoder_hid_dim_type,
            attention_head_dim=attention_head_dim,
            num_attention_heads=num_attention_heads,
            dual_cross_attention=dual_cross_attention,
            use_linear_projection=use_linear_projection,
            class_embed_type=class_embed_type,
            addition_embed_type=addition_embed_type,
            addition_time_embed_dim=addition_time_embed_dim,
            num_class_embeds=num_class_embeds,
            upcast_attention=upcast_attention,
            resnet_time_scale_shift=resnet_time_scale_shift,
            resnet_skip_time_act=resnet_skip_time_act,
            resnet_out_scale_factor=resnet_out_scale_factor,
            time_embedding_type=time_embedding_type,
            time_embedding_dim=time_embedding_dim,
            time_embedding_act_fn=time_embedding_act_fn,
            timestep_post_act=timestep_post_act,
            time_cond_proj_dim=time_cond_proj_dim,
            conv_in_kernel=conv_in_kernel,
            conv_out_kernel=conv_out_kernel,
            projection_class_embeddings_input_dim=projection_class_embeddings_input_dim,
            attention_type=attention_type,
            class_embeddings_concat=class_embeddings_concat,
            mid_block_only_cross_attention=mid_block_only_cross_attention,
            cross_attention_norm=cross_attention_norm,
            addition_embed_type_num_heads=addition_embed_type_num_heads,)
        self._internal_dict = copy.deepcopy(self._internal_dict)
        self.config.in_channels = in_channels
        self.config.extra_condition_names = extra_condition_names
    
    @property
    def extra_condition_names(self) -> List[str]:
        return self.config.extra_condition_names

    def add_extra_conditions(self, extra_condition_names: Union[str, List[str]]):
        if isinstance(extra_condition_names, str):
            extra_condition_names = [extra_condition_names]
        conv_in_kernel = self.config.conv_in_kernel
        conv_in_weight = self.conv_in.weight
        self.config.extra_condition_names += extra_condition_names
        full_in_channels = self.config.in_channels * (1 + len(self.config.extra_condition_names))
        new_conv_in_weight = torch.zeros(
            conv_in_weight.shape[0], full_in_channels, conv_in_kernel, conv_in_kernel,
            dtype=conv_in_weight.dtype,
            device=conv_in_weight.device,)
        new_conv_in_weight[:,:conv_in_weight.shape[1]] = conv_in_weight
        self.conv_in.weight = nn.Parameter(
            new_conv_in_weight.data,
            requires_grad=conv_in_weight.requires_grad,)
        self.conv_in.in_channels = full_in_channels
        
        return self
    
    def activate_extra_condition_adapters(self):
        lora_layers = [layer for layer in self.modules() if isinstance(layer, LoraLayer)]
        if len(lora_layers) > 0:
            self._hf_peft_config_loaded = True
        for lora_layer in lora_layers:
            adapter_names = [k for k in lora_layer.scaling.keys() if k in self.config.extra_condition_names] 
            adapter_names += lora_layer.active_adapters
            adapter_names = list(set(adapter_names))
            lora_layer.set_adapter(adapter_names)
    
    def set_extra_condition_scale(self, scale: Union[float, List[float]] = 1.0):
        if isinstance(scale, float):
            scale = [scale] * len(self.config.extra_condition_names)

        lora_layers = [layer for layer in self.modules() if isinstance(layer, LoraLayer)]
        for s, n in zip(scale, self.config.extra_condition_names):
            for lora_layer in lora_layers:
                lora_layer.set_scale(n, s)
    
    @property
    def default_half_lora_target_modules(self) -> List[str]:
        module_names = []
        for name, module in self.named_modules():
            if "conv_out" in name or "up_blocks" in name:
                continue
            if isinstance(module, (nn.Linear, nn.Conv2d)):
                module_names.append(name)
        return list(set(module_names))
    
    @property
    def default_full_lora_target_modules(self) -> List[str]:
        module_names = []
        for name, module in self.named_modules():
            if isinstance(module, (nn.Linear, nn.Conv2d)):
                module_names.append(name)
        return list(set(module_names))
    
    @property
    def default_half_skip_attn_lora_target_modules(self) -> List[str]:
        return [
            module_name
            for module_name in self.default_half_lora_target_modules 
            if all(
                not module_name.endswith(attn_name) 
                for attn_name in 
                ["to_k", "to_q", "to_v", "to_out.0"]
            )
        ]
    
    @property
    def default_full_skip_attn_lora_target_modules(self) -> List[str]:
        return [
            module_name
            for module_name in self.default_full_lora_target_modules 
            if all(
                not module_name.endswith(attn_name) 
                for attn_name in 
                ["to_k", "to_q", "to_v", "to_out.0"]
            )
        ]

    def forward(
        self,
        sample: torch.Tensor,
        timestep: Union[torch.Tensor, float, int],
        encoder_hidden_states: torch.Tensor,
        class_labels: Optional[torch.Tensor] = None,
        timestep_cond: Optional[torch.Tensor] = None,
        attention_mask: Optional[torch.Tensor] = None,
        cross_attention_kwargs: Optional[Dict[str, Any]] = None,
        added_cond_kwargs: Optional[Dict[str, torch.Tensor]] = None,
        down_block_additional_residuals: Optional[Tuple[torch.Tensor]] = None,
        mid_block_additional_residual: Optional[torch.Tensor] = None,
        down_intrablock_additional_residuals: Optional[Tuple[torch.Tensor]] = None,
        encoder_attention_mask: Optional[torch.Tensor] = None,
        extra_conditions: Optional[Union[torch.Tensor, List[torch.Tensor]]] = None,
        return_dict: bool = True,
    ) -> Union[UNet2DConditionOutput, Tuple]:
        if extra_conditions is not None:
            if isinstance(extra_conditions, list):
                extra_conditions = torch.cat(extra_conditions, dim=1)
            sample = torch.cat([sample, extra_conditions], dim=1)
        return super().forward(
            sample=sample,
            timestep=timestep,
            encoder_hidden_states=encoder_hidden_states,
            class_labels=class_labels,
            timestep_cond=timestep_cond,
            attention_mask=attention_mask,
            cross_attention_kwargs=cross_attention_kwargs,
            added_cond_kwargs=added_cond_kwargs,
            down_block_additional_residuals=down_block_additional_residuals,
            mid_block_additional_residual=mid_block_additional_residual,
            down_intrablock_additional_residuals=down_intrablock_additional_residuals,
            encoder_attention_mask=encoder_attention_mask,
            return_dict=return_dict,)


class PeftConv2dEx(PeftConv2d):
    def reset_lora_parameters(self, adapter_name, init_lora_weights):
        if init_lora_weights is False:
            return
        
        if isinstance(init_lora_weights, str) and "pissa" in init_lora_weights.lower():
            if self.conv2d_pissa_init(adapter_name, init_lora_weights):
                return
            # Failed
            init_lora_weights = "gaussian"

        super(PeftConv2d, self).reset_lora_parameters(adapter_name, init_lora_weights)

    def conv2d_pissa_init(self, adapter_name, init_lora_weights):
        weight = weight_ori = self.get_base_layer().weight
        weight = weight.flatten(start_dim=1)
        if self.r[adapter_name] > weight.shape[0]:
            return False
        dtype = weight.dtype
        if dtype not in [torch.float32, torch.float16, torch.bfloat16]:
            raise TypeError(
                "Please initialize PiSSA under float32, float16, or bfloat16. "
                "Subsequently, re-quantize the residual model to help minimize quantization errors."
            )
        weight = weight.to(torch.float32)

        if init_lora_weights == "pissa":
            # USV^T = W <-> VSU^T = W^T, where W^T = weight.data in R^{out_channel, in_channel},
            V, S, Uh = torch.linalg.svd(weight.data, full_matrices=False)
            Vr = V[:, : self.r[adapter_name]]
            Sr = S[: self.r[adapter_name]]
            Sr /= self.scaling[adapter_name]
            Uhr = Uh[: self.r[adapter_name]]
        elif len(init_lora_weights.split("_niter_")) == 2:
            Vr, Sr, Ur = svd_lowrank(
                weight.data, self.r[adapter_name], niter=int(init_lora_weights.split("_niter_")[-1])
            )
            Sr /= self.scaling[adapter_name]
            Uhr = Ur.t()
        else:
            raise ValueError(
                f"init_lora_weights should be 'pissa' or 'pissa_niter_[number of iters]', got {init_lora_weights} instead."
            )

        lora_A = torch.diag(torch.sqrt(Sr)) @ Uhr
        lora_B = Vr @ torch.diag(torch.sqrt(Sr))
        self.lora_A[adapter_name].weight.data = lora_A.view([-1] + list(weight_ori.shape[1:]))
        self.lora_B[adapter_name].weight.data = lora_B.view([-1, self.r[adapter_name]] + [1] * (weight_ori.ndim - 2))
        weight = weight.data - self.scaling[adapter_name] * lora_B @ lora_A
        weight = weight.to(dtype)
        self.get_base_layer().weight.data = weight.view_as(weight_ori)
        
        return True


# Patch peft conv2d
PeftConv2d.reset_lora_parameters = PeftConv2dEx.reset_lora_parameters
PeftConv2d.conv2d_pissa_init = PeftConv2dEx.conv2d_pissa_init