Spaces:
Running
Running
from typing import Any, Dict, List, Optional, Tuple, Union | |
import copy | |
import torch | |
from torch import nn, svd_lowrank | |
from peft.tuners.lora import LoraLayer, Conv2d as PeftConv2d | |
from diffusers.configuration_utils import register_to_config | |
from diffusers.models.unets.unet_2d_condition import UNet2DConditionOutput, UNet2DConditionModel as UNet2DConditionModel | |
class UNet2DConditionModelEx(UNet2DConditionModel): | |
def __init__( | |
self, | |
sample_size: Optional[int] = None, | |
in_channels: int = 4, | |
out_channels: int = 4, | |
center_input_sample: bool = False, | |
flip_sin_to_cos: bool = True, | |
freq_shift: int = 0, | |
down_block_types: Tuple[str] = ( | |
"CrossAttnDownBlock2D", | |
"CrossAttnDownBlock2D", | |
"CrossAttnDownBlock2D", | |
"DownBlock2D", | |
), | |
mid_block_type: Optional[str] = "UNetMidBlock2DCrossAttn", | |
up_block_types: Tuple[str] = ("UpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D"), | |
only_cross_attention: Union[bool, Tuple[bool]] = False, | |
block_out_channels: Tuple[int] = (320, 640, 1280, 1280), | |
layers_per_block: Union[int, Tuple[int]] = 2, | |
downsample_padding: int = 1, | |
mid_block_scale_factor: float = 1, | |
dropout: float = 0.0, | |
act_fn: str = "silu", | |
norm_num_groups: Optional[int] = 32, | |
norm_eps: float = 1e-5, | |
cross_attention_dim: Union[int, Tuple[int]] = 1280, | |
transformer_layers_per_block: Union[int, Tuple[int], Tuple[Tuple]] = 1, | |
reverse_transformer_layers_per_block: Optional[Tuple[Tuple[int]]] = None, | |
encoder_hid_dim: Optional[int] = None, | |
encoder_hid_dim_type: Optional[str] = None, | |
attention_head_dim: Union[int, Tuple[int]] = 8, | |
num_attention_heads: Optional[Union[int, Tuple[int]]] = None, | |
dual_cross_attention: bool = False, | |
use_linear_projection: bool = False, | |
class_embed_type: Optional[str] = None, | |
addition_embed_type: Optional[str] = None, | |
addition_time_embed_dim: Optional[int] = None, | |
num_class_embeds: Optional[int] = None, | |
upcast_attention: bool = False, | |
resnet_time_scale_shift: str = "default", | |
resnet_skip_time_act: bool = False, | |
resnet_out_scale_factor: float = 1.0, | |
time_embedding_type: str = "positional", | |
time_embedding_dim: Optional[int] = None, | |
time_embedding_act_fn: Optional[str] = None, | |
timestep_post_act: Optional[str] = None, | |
time_cond_proj_dim: Optional[int] = None, | |
conv_in_kernel: int = 3, | |
conv_out_kernel: int = 3, | |
projection_class_embeddings_input_dim: Optional[int] = None, | |
attention_type: str = "default", | |
class_embeddings_concat: bool = False, | |
mid_block_only_cross_attention: Optional[bool] = None, | |
cross_attention_norm: Optional[str] = None, | |
addition_embed_type_num_heads: int = 64, | |
extra_condition_names: List[str] = [], | |
): | |
num_extra_conditions = len(extra_condition_names) | |
super().__init__( | |
sample_size=sample_size, | |
in_channels=in_channels * (1 + num_extra_conditions), | |
out_channels=out_channels, | |
center_input_sample=center_input_sample, | |
flip_sin_to_cos=flip_sin_to_cos, | |
freq_shift=freq_shift, | |
down_block_types=down_block_types, | |
mid_block_type=mid_block_type, | |
up_block_types=up_block_types, | |
only_cross_attention=only_cross_attention, | |
block_out_channels=block_out_channels, | |
layers_per_block=layers_per_block, | |
downsample_padding=downsample_padding, | |
mid_block_scale_factor=mid_block_scale_factor, | |
dropout=dropout, | |
act_fn=act_fn, | |
norm_num_groups=norm_num_groups, | |
norm_eps=norm_eps, | |
cross_attention_dim=cross_attention_dim, | |
transformer_layers_per_block=transformer_layers_per_block, | |
reverse_transformer_layers_per_block=reverse_transformer_layers_per_block, | |
encoder_hid_dim=encoder_hid_dim, | |
encoder_hid_dim_type=encoder_hid_dim_type, | |
attention_head_dim=attention_head_dim, | |
num_attention_heads=num_attention_heads, | |
dual_cross_attention=dual_cross_attention, | |
use_linear_projection=use_linear_projection, | |
class_embed_type=class_embed_type, | |
addition_embed_type=addition_embed_type, | |
addition_time_embed_dim=addition_time_embed_dim, | |
num_class_embeds=num_class_embeds, | |
upcast_attention=upcast_attention, | |
resnet_time_scale_shift=resnet_time_scale_shift, | |
resnet_skip_time_act=resnet_skip_time_act, | |
resnet_out_scale_factor=resnet_out_scale_factor, | |
time_embedding_type=time_embedding_type, | |
time_embedding_dim=time_embedding_dim, | |
time_embedding_act_fn=time_embedding_act_fn, | |
timestep_post_act=timestep_post_act, | |
time_cond_proj_dim=time_cond_proj_dim, | |
conv_in_kernel=conv_in_kernel, | |
conv_out_kernel=conv_out_kernel, | |
projection_class_embeddings_input_dim=projection_class_embeddings_input_dim, | |
attention_type=attention_type, | |
class_embeddings_concat=class_embeddings_concat, | |
mid_block_only_cross_attention=mid_block_only_cross_attention, | |
cross_attention_norm=cross_attention_norm, | |
addition_embed_type_num_heads=addition_embed_type_num_heads,) | |
self._internal_dict = copy.deepcopy(self._internal_dict) | |
self.config.in_channels = in_channels | |
self.config.extra_condition_names = extra_condition_names | |
def extra_condition_names(self) -> List[str]: | |
return self.config.extra_condition_names | |
def add_extra_conditions(self, extra_condition_names: Union[str, List[str]]): | |
if isinstance(extra_condition_names, str): | |
extra_condition_names = [extra_condition_names] | |
conv_in_kernel = self.config.conv_in_kernel | |
conv_in_weight = self.conv_in.weight | |
self.config.extra_condition_names += extra_condition_names | |
full_in_channels = self.config.in_channels * (1 + len(self.config.extra_condition_names)) | |
new_conv_in_weight = torch.zeros( | |
conv_in_weight.shape[0], full_in_channels, conv_in_kernel, conv_in_kernel, | |
dtype=conv_in_weight.dtype, | |
device=conv_in_weight.device,) | |
new_conv_in_weight[:,:conv_in_weight.shape[1]] = conv_in_weight | |
self.conv_in.weight = nn.Parameter( | |
new_conv_in_weight.data, | |
requires_grad=conv_in_weight.requires_grad,) | |
self.conv_in.in_channels = full_in_channels | |
return self | |
def activate_adapters(self, adapter_names: Union[List[str], None] = None): | |
lora_layers = [layer for layer in self.modules() if isinstance(layer, LoraLayer)] | |
for lora_layer in lora_layers: | |
_adapter_names = adapter_names or list(lora_layer.scaling.keys()) | |
lora_layer.set_adapter(_adapter_names) | |
def set_extra_condition_scale(self, scale: Union[float, List[float]] = 1.0): | |
if isinstance(scale, float): | |
scale = [scale] * len(self.config.extra_condition_names) | |
lora_layers = [layer for layer in self.modules() if isinstance(layer, LoraLayer)] | |
for s, n in zip(scale, self.config.extra_condition_names): | |
for lora_layer in lora_layers: | |
lora_layer.set_scale(n, s) | |
def default_half_lora_target_modules(self) -> List[str]: | |
module_names = [] | |
for name, module in self.named_modules(): | |
if "conv_out" in name or "up_blocks" in name: | |
continue | |
if isinstance(module, (nn.Linear, nn.Conv2d)): | |
module_names.append(name) | |
return list(set(module_names)) | |
def default_full_lora_target_modules(self) -> List[str]: | |
module_names = [] | |
for name, module in self.named_modules(): | |
if isinstance(module, (nn.Linear, nn.Conv2d)): | |
module_names.append(name) | |
return list(set(module_names)) | |
def default_half_skip_attn_lora_target_modules(self) -> List[str]: | |
return [ | |
module_name | |
for module_name in self.default_half_lora_target_modules | |
if all( | |
not module_name.endswith(attn_name) | |
for attn_name in | |
["to_k", "to_q", "to_v", "to_out.0"] | |
) | |
] | |
def default_full_skip_attn_lora_target_modules(self) -> List[str]: | |
return [ | |
module_name | |
for module_name in self.default_full_lora_target_modules | |
if all( | |
not module_name.endswith(attn_name) | |
for attn_name in | |
["to_k", "to_q", "to_v", "to_out.0"] | |
) | |
] | |
def forward( | |
self, | |
sample: torch.Tensor, | |
timestep: Union[torch.Tensor, float, int], | |
encoder_hidden_states: torch.Tensor, | |
class_labels: Optional[torch.Tensor] = None, | |
timestep_cond: Optional[torch.Tensor] = None, | |
attention_mask: Optional[torch.Tensor] = None, | |
cross_attention_kwargs: Optional[Dict[str, Any]] = None, | |
added_cond_kwargs: Optional[Dict[str, torch.Tensor]] = None, | |
down_block_additional_residuals: Optional[Tuple[torch.Tensor]] = None, | |
mid_block_additional_residual: Optional[torch.Tensor] = None, | |
down_intrablock_additional_residuals: Optional[Tuple[torch.Tensor]] = None, | |
encoder_attention_mask: Optional[torch.Tensor] = None, | |
extra_conditions: Optional[Union[torch.Tensor, List[torch.Tensor]]] = None, | |
return_dict: bool = True, | |
) -> Union[UNet2DConditionOutput, Tuple]: | |
if extra_conditions is not None: | |
if isinstance(extra_conditions, list): | |
extra_conditions = torch.cat(extra_conditions, dim=1) | |
sample = torch.cat([sample, extra_conditions], dim=1) | |
return super().forward( | |
sample=sample, | |
timestep=timestep, | |
encoder_hidden_states=encoder_hidden_states, | |
class_labels=class_labels, | |
timestep_cond=timestep_cond, | |
attention_mask=attention_mask, | |
cross_attention_kwargs=cross_attention_kwargs, | |
added_cond_kwargs=added_cond_kwargs, | |
down_block_additional_residuals=down_block_additional_residuals, | |
mid_block_additional_residual=mid_block_additional_residual, | |
down_intrablock_additional_residuals=down_intrablock_additional_residuals, | |
encoder_attention_mask=encoder_attention_mask, | |
return_dict=return_dict,) | |
class PeftConv2dEx(PeftConv2d): | |
def reset_lora_parameters(self, adapter_name, init_lora_weights): | |
if init_lora_weights is False: | |
return | |
if isinstance(init_lora_weights, str) and "pissa" in init_lora_weights.lower(): | |
if self.conv2d_pissa_init(adapter_name, init_lora_weights): | |
return | |
# Failed | |
init_lora_weights = "gaussian" | |
super(PeftConv2d, self).reset_lora_parameters(adapter_name, init_lora_weights) | |
def conv2d_pissa_init(self, adapter_name, init_lora_weights): | |
weight = weight_ori = self.get_base_layer().weight | |
weight = weight.flatten(start_dim=1) | |
if self.r[adapter_name] > weight.shape[0]: | |
return False | |
dtype = weight.dtype | |
if dtype not in [torch.float32, torch.float16, torch.bfloat16]: | |
raise TypeError( | |
"Please initialize PiSSA under float32, float16, or bfloat16. " | |
"Subsequently, re-quantize the residual model to help minimize quantization errors." | |
) | |
weight = weight.to(torch.float32) | |
if init_lora_weights == "pissa": | |
# USV^T = W <-> VSU^T = W^T, where W^T = weight.data in R^{out_channel, in_channel}, | |
V, S, Uh = torch.linalg.svd(weight.data, full_matrices=False) | |
Vr = V[:, : self.r[adapter_name]] | |
Sr = S[: self.r[adapter_name]] | |
Sr /= self.scaling[adapter_name] | |
Uhr = Uh[: self.r[adapter_name]] | |
elif len(init_lora_weights.split("_niter_")) == 2: | |
Vr, Sr, Ur = svd_lowrank( | |
weight.data, self.r[adapter_name], niter=int(init_lora_weights.split("_niter_")[-1]) | |
) | |
Sr /= self.scaling[adapter_name] | |
Uhr = Ur.t() | |
else: | |
raise ValueError( | |
f"init_lora_weights should be 'pissa' or 'pissa_niter_[number of iters]', got {init_lora_weights} instead." | |
) | |
lora_A = torch.diag(torch.sqrt(Sr)) @ Uhr | |
lora_B = Vr @ torch.diag(torch.sqrt(Sr)) | |
self.lora_A[adapter_name].weight.data = lora_A.view([-1] + list(weight_ori.shape[1:])) | |
self.lora_B[adapter_name].weight.data = lora_B.view([-1, self.r[adapter_name]] + [1] * (weight_ori.ndim - 2)) | |
weight = weight.data - self.scaling[adapter_name] * lora_B @ lora_A | |
weight = weight.to(dtype) | |
self.get_base_layer().weight.data = weight.view_as(weight_ori) | |
return True | |
# Patch peft conv2d | |
PeftConv2d.reset_lora_parameters = PeftConv2dEx.reset_lora_parameters | |
PeftConv2d.conv2d_pissa_init = PeftConv2dEx.conv2d_pissa_init | |