|
import math |
|
from einops import rearrange |
|
from vector_quantize_pytorch import GroupedResidualFSQ |
|
|
|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
|
|
class ConvNeXtBlock(nn.Module): |
|
def __init__( |
|
self, |
|
dim: int, |
|
intermediate_dim: int, |
|
kernel, dilation, |
|
layer_scale_init_value: float = 1e-6, |
|
): |
|
|
|
super().__init__() |
|
self.dwconv = nn.Conv1d(dim, dim, |
|
kernel_size=kernel, padding=dilation*(kernel//2), |
|
dilation=dilation, groups=dim |
|
) |
|
|
|
self.norm = nn.LayerNorm(dim, eps=1e-6) |
|
self.pwconv1 = nn.Linear(dim, intermediate_dim) |
|
self.act = nn.GELU() |
|
self.pwconv2 = nn.Linear(intermediate_dim, dim) |
|
self.gamma = ( |
|
nn.Parameter(layer_scale_init_value * torch.ones(dim), requires_grad=True) |
|
if layer_scale_init_value > 0 |
|
else None |
|
) |
|
|
|
def forward(self, x: torch.Tensor, cond = None) -> torch.Tensor: |
|
residual = x |
|
x = self.dwconv(x) |
|
x = x.transpose(1, 2) |
|
x = self.norm(x) |
|
x = self.pwconv1(x) |
|
x = self.act(x) |
|
x = self.pwconv2(x) |
|
if self.gamma is not None: |
|
x = self.gamma * x |
|
x = x.transpose(1, 2) |
|
|
|
x = residual + x |
|
return x |
|
|
|
|
|
|
|
class GFSQ(nn.Module): |
|
|
|
def __init__(self, |
|
dim, levels, G, R, eps=1e-5, transpose = True |
|
): |
|
super(GFSQ, self).__init__() |
|
self.quantizer = GroupedResidualFSQ( |
|
dim=dim, |
|
levels=levels, |
|
num_quantizers=R, |
|
groups=G, |
|
) |
|
self.n_ind = math.prod(levels) |
|
self.eps = eps |
|
self.transpose = transpose |
|
self.G = G |
|
self.R = R |
|
|
|
def _embed(self, x): |
|
if self.transpose: |
|
x = x.transpose(1,2) |
|
x = rearrange( |
|
x, "b t (g r) -> g b t r", g = self.G, r = self.R, |
|
) |
|
feat = self.quantizer.get_output_from_indices(x) |
|
return feat.transpose(1,2) if self.transpose else feat |
|
|
|
def forward(self, x,): |
|
if self.transpose: |
|
x = x.transpose(1,2) |
|
feat, ind = self.quantizer(x) |
|
ind = rearrange( |
|
ind, "g b t r ->b t (g r)", |
|
) |
|
embed_onehot = F.one_hot(ind.long(), self.n_ind).to(x.dtype) |
|
e_mean = torch.mean(embed_onehot, dim=[0,1]) |
|
e_mean = e_mean / (e_mean.sum(dim=1) + self.eps).unsqueeze(1) |
|
perplexity = torch.exp(-torch.sum(e_mean * torch.log(e_mean + self.eps), dim=1)) |
|
|
|
return ( |
|
torch.zeros(perplexity.shape, dtype=x.dtype, device=x.device), |
|
feat.transpose(1,2) if self.transpose else feat, |
|
perplexity, |
|
None, |
|
ind.transpose(1,2) if self.transpose else ind, |
|
) |
|
|
|
class DVAEDecoder(nn.Module): |
|
def __init__(self, idim, odim, |
|
n_layer = 12, bn_dim = 64, hidden = 256, |
|
kernel = 7, dilation = 2, up = False |
|
): |
|
super().__init__() |
|
self.up = up |
|
self.conv_in = nn.Sequential( |
|
nn.Conv1d(idim, bn_dim, 3, 1, 1), nn.GELU(), |
|
nn.Conv1d(bn_dim, hidden, 3, 1, 1) |
|
) |
|
self.decoder_block = nn.ModuleList([ |
|
ConvNeXtBlock(hidden, hidden* 4, kernel, dilation,) |
|
for _ in range(n_layer)]) |
|
self.conv_out = nn.Conv1d(hidden, odim, kernel_size=1, bias=False) |
|
|
|
def forward(self, input, conditioning=None): |
|
|
|
x = input.transpose(1, 2) |
|
x = self.conv_in(x) |
|
for f in self.decoder_block: |
|
x = f(x, conditioning) |
|
|
|
x = self.conv_out(x) |
|
return x.transpose(1, 2) |
|
|
|
|
|
class DVAE(nn.Module): |
|
def __init__( |
|
self, decoder_config, vq_config, dim=512 |
|
): |
|
super().__init__() |
|
self.register_buffer('coef', torch.randn(1, 100, 1)) |
|
|
|
self.decoder = DVAEDecoder(**decoder_config) |
|
self.out_conv = nn.Conv1d(dim, 100, 3, 1, 1, bias=False) |
|
if vq_config is not None: |
|
self.vq_layer = GFSQ(**vq_config) |
|
else: |
|
self.vq_layer = None |
|
|
|
def forward(self, inp): |
|
|
|
if self.vq_layer is not None: |
|
vq_feats = self.vq_layer._embed(inp) |
|
else: |
|
vq_feats = inp.detach().clone() |
|
|
|
temp = torch.chunk(vq_feats, 2, dim=1) |
|
temp = torch.stack(temp, -1) |
|
vq_feats = temp.reshape(*temp.shape[:2], -1) |
|
|
|
vq_feats = vq_feats.transpose(1, 2) |
|
dec_out = self.decoder(input=vq_feats) |
|
dec_out = self.out_conv(dec_out.transpose(1, 2)) |
|
mel = dec_out * self.coef |
|
|
|
return mel |
|
|