File size: 1,402 Bytes
e81879a
3559626
05c62eb
 
dc4e72f
 
 
 
e81879a
dc4e72f
ba8079a
d08200f
2679436
c7429e9
94fe01a
 
 
 
05c62eb
ba8079a
 
dc4e72f
d08200f
 
 
 
 
 
 
 
 
 
4ddb435
 
fb887f7
 
dc4e72f
07505b0
 
dc4e72f
2dfea56
ad0e7fc
4ddb435
05c62eb
ba540df
05c62eb
8862ebf
05c62eb
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
import gradio as gr
import tensorflow as tf
import numpy as np
import os
import tensorflow as tf
import numpy as np
from keras.models import load_model
from tensorflow.keras.utils import load_img

# Charger le modèle

model = load_model('model_multi.h5')


def format_decimal(value):
    decimal_value = format(value, ".2f")
    return decimal_value
    
def detect(img):
    img = np.expand_dims(img, axis=0)
    img = img/255
    prediction = model.predict(img)[0]
    #     if prediction[0] <= 0.80:
    #     return "Pneumonia  Detected!"

    # return "Pneumonia Not Detected!"
    if format_decimal(prediction[0]) >= "0.5":
        return "Risque d'infection bactérienne"
    if format_decimal(prediction[1]) >= "0.5":
        return "Poumon sain"
    if format_decimal(prediction[2]) >= "0.5":
        return "Risque d'infection biologique"


# result = detect(img)
# print(result)
os.system("tar -zxvf examples.tar.gz")
examples = ['examples/n1.jpeg', 'examples/n2.jpeg', 'examples/n3.jpeg', 'examples/n4.jpeg', 'examples/n5.jpeg',
            'examples/n6.jpeg', 'examples/n7.jpeg', 'examples/n8.jpeg', 'examples/p6.jpeg', 'examples/p7.jpeg',]

input = gr.inputs.Image(shape=(100,100))



title = "PneumoDetect: Detection de pneumonie par x-ray"

iface = gr.Interface(fn=detect, inputs=input, outputs="text",examples = examples, examples_per_page=20, title=title)
iface.launch(inline=False)