Spaces:
Sleeping
Sleeping
File size: 1,363 Bytes
e81879a 3559626 05c62eb dc4e72f e81879a dc4e72f c7429e9 dc4e72f 4f950cb 05c62eb dc4e72f 4ddb435 6d69209 4ddb435 dc4e72f 3559626 4ddb435 05c62eb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 |
import gradio as gr
import tensorflow as tf
import numpy as np
import os
import tensorflow as tf
import numpy as np
from keras.models import load_model
from tensorflow.keras.utils import load_img
# Charger le modèle
model = load_model('/content/drive/MyDrive/T-DEV-810/model_cv.h5')
# Charger l'image
img = load_img('/content/drive/MyDrive/T-DEV-810/DS/test/NORMAL/IM-0063-0001.jpeg', target_size=(100, 100))
# Prétraiter l'image
# img = image.img_to_array(img)
img = np.expand_dims(img, axis=0)
img = img/255
def detect(img):
prediction = model.predict(img)[0]
print(prediction)
if prediction[0] <= 0.80:
return "Pneumonia Detected!"
return "Pneumonia Not Detected!"
result = detect(img)
print(result)
os.system("tar -zxvf examples.tar.gz")
input = gr.inputs.Image(shape=(100, 100))
examples = ['examples/n1.jpeg', 'examples/n2.jpeg', 'examples/n3.jpeg', 'examples/n4.jpeg', 'examples/n5.jpeg',
'examples/n6.jpeg', 'examples/n7.jpeg', 'examples/n8.jpeg', 'examples/p6.jpeg', 'examples/p7.jpeg',
'examples/p1.jpeg', 'examples/p2.jpeg', 'examples/p3.jpeg', 'examples/p4.jpeg', 'examples/p8.jpeg']
title = "PneumoDetect: Pneumonia Detection from Chest X-Rays"
iface = gr.Interface(fn=detect, inputs=input, outputs="text", examples=examples, examples_per_page=20, title=title)
iface.launch(inline=False)
|