File size: 9,408 Bytes
81f0a03
 
403487b
81f0a03
de9fbbf
81f0a03
 
 
403487b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
81f0a03
 
403487b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
953f193
403487b
 
 
 
 
81f0a03
403487b
 
 
81f0a03
 
403487b
 
 
 
 
 
81f0a03
403487b
 
81f0a03
 
 
 
 
b6e8571
 
403487b
81f0a03
403487b
 
81f0a03
 
 
 
403487b
 
81f0a03
e12b285
81f0a03
403487b
 
 
 
 
 
 
 
 
 
 
 
 
81f0a03
 
403487b
81f0a03
 
 
403487b
81f0a03
403487b
fda8b87
81f0a03
 
8d9f6bc
81f0a03
 
 
 
fda8b87
 
 
 
 
 
 
 
81f0a03
403487b
 
 
 
81f0a03
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
403487b
 
 
 
 
81f0a03
403487b
de9fbbf
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
import gradio as gr
import numpy as np
import os

from resources.data import fixed_messages, topic_lists
from utils.ui import add_candidate_message, add_interviewer_message


def change_code_area(interview_type):
    if interview_type == "coding":
        return gr.update(
            label="Please write your code here. You can use any language, but only Python syntax highlighting is available.",
            language="python",
        )
    elif interview_type == "sql":
        return gr.update(
            label="Please write your query here.",
            language="sql",
        )
    else:
        return gr.update(
            label="Please write any notes for your solution here.",
            language=None,
        )


def get_problem_solving_ui(llm, tts, stt, default_audio_params, audio_output):
    with gr.Tab("Interview", render=False, elem_id=f"tab") as problem_tab:
        chat_history = gr.State([])
        previous_code = gr.State("")
        hi_markdown = gr.Markdown(
            "<h2 style='text-align: center;'> Hi! I'm here to guide you through a practice session for your technical interview. Choose the interview settings to begin.</h2>\n"
        )
        with gr.Row() as init_acc:
            with gr.Column(scale=3):
                interview_type_select = gr.Dropdown(
                    show_label=False,
                    info="Type of the interview.",
                    choices=["coding", "ml_design", "ml_theory", "system_design", "math", "sql"],
                    value="coding",
                    container=True,
                    allow_custom_value=False,
                    elem_id=f"interview_type_select",
                    scale=2,
                )
                difficulty_select = gr.Dropdown(
                    show_label=False,
                    info="Difficulty of the problem.",
                    choices=["Easy", "Medium", "Hard"],
                    value="Medium",
                    container=True,
                    allow_custom_value=True,
                    elem_id=f"difficulty_select",
                    scale=2,
                )
                topic_select = gr.Dropdown(
                    show_label=False,
                    info="Topic (you can type any value).",
                    choices=topic_lists[interview_type_select.value],
                    value=np.random.choice(topic_lists[interview_type_select.value]),
                    container=True,
                    allow_custom_value=True,
                    elem_id=f"topic_select",
                    scale=2,
                )
            with gr.Column(scale=4):
                requirements = gr.Textbox(
                    label="Requirements",
                    show_label=False,
                    placeholder="Specify additional requirements if any.",
                    container=False,
                    lines=5,
                    elem_id=f"requirements",
                )
                with gr.Row():
                    terms_checkbox = gr.Checkbox(
                        label="",
                        container=False,
                        value=not os.getenv("IS_DEMO", False),
                        interactive=True,
                        elem_id=f"terms_checkbox",
                        min_width=20,
                    )
                    with gr.Column(scale=100):
                        gr.Markdown(
                            "#### I agree to the [terms and conditions](https://github.com/IliaLarchenko/Interviewer?tab=readme-ov-file#important-legal-and-compliance-information)"
                        )
                start_btn = gr.Button("Generate a problem", elem_id=f"start_btn", interactive=not os.getenv("IS_DEMO", False))

        with gr.Accordion("Problem statement", open=True, visible=False) as problem_acc:
            description = gr.Markdown(elem_id=f"problem_description", line_breaks=True)
        with gr.Accordion("Solution", open=True, visible=False) as solution_acc:
            with gr.Row() as content:
                with gr.Column(scale=2):
                    code = gr.Code(
                        label="Please write your code here.",
                        language="python",
                        lines=46,
                        elem_id=f"code",
                    )
                with gr.Column(scale=1):
                    end_btn = gr.Button("Finish the interview", interactive=False, variant="stop", elem_id=f"end_btn")
                    chat = gr.Chatbot(label="Chat", show_label=False, show_share_button=False, elem_id=f"chat")
                    message = gr.Textbox(
                        label="Message",
                        show_label=False,
                        lines=3,
                        max_lines=3,
                        interactive=True,
                        container=False,
                        elem_id=f"message",
                    )
                    send_btn = gr.Button("Send", interactive=False, elem_id=f"send_btn")
                    audio_input = gr.Audio(interactive=False, **default_audio_params, elem_id=f"audio_input")

                    audio_buffer = gr.State(np.array([], dtype=np.int16))
                    transcript = gr.State({"words": [], "not_confirmed": 0, "last_cutoff": 0, "text": ""})

        with gr.Accordion("Feedback", open=True, visible=False) as feedback_acc:
            feedback = gr.Markdown(elem_id=f"feedback", line_breaks=True)

        # Start button click action chain
        start_btn.click(fn=add_interviewer_message(fixed_messages["start"]), inputs=[chat], outputs=[chat]).success(
            fn=tts.read_last_message, inputs=[chat], outputs=[audio_output]
        ).success(
            fn=lambda: (
                gr.update(visible=False),
                gr.update(interactive=False),
                gr.update(interactive=False),
                gr.update(interactive=False),
                gr.update(visible=False),
            ),
            outputs=[init_acc, start_btn, terms_checkbox, interview_type_select, hi_markdown],
        ).success(
            fn=lambda: (gr.update(visible=True)),
            outputs=[problem_acc],
        ).success(
            fn=llm.get_problem,
            inputs=[requirements, difficulty_select, topic_select, interview_type_select],
            outputs=[description],
            scroll_to_output=True,
        ).success(
            fn=llm.init_bot, inputs=[description, interview_type_select], outputs=[chat_history]
        ).success(
            fn=lambda: (gr.update(visible=True), gr.update(interactive=True), gr.update(interactive=True), gr.update(interactive=True)),
            outputs=[solution_acc, end_btn, audio_input, send_btn],
        )

        end_btn.click(fn=lambda x: add_candidate_message("Let's stop here.", x), inputs=[chat], outputs=[chat]).success(
            fn=add_interviewer_message(fixed_messages["end"]),
            inputs=[chat],
            outputs=[chat],
        ).success(fn=tts.read_last_message, inputs=[chat], outputs=[audio_output]).success(
            fn=lambda: (
                gr.update(open=False),
                gr.update(interactive=False),
                gr.update(open=False),
                gr.update(interactive=False),
                gr.update(interactive=False),
            ),
            outputs=[solution_acc, end_btn, problem_acc, audio_input, send_btn],
        ).success(
            fn=lambda: (gr.update(visible=True)),
            outputs=[feedback_acc],
        ).success(
            fn=llm.end_interview, inputs=[description, chat_history, interview_type_select], outputs=[feedback]
        )

        send_btn.click(fn=add_candidate_message, inputs=[message, chat], outputs=[chat]).success(
            fn=lambda: None, outputs=[message]
        ).success(
            fn=llm.send_request,
            inputs=[code, previous_code, chat_history, chat],
            outputs=[chat_history, chat, previous_code],
        ).success(
            fn=tts.read_last_message, inputs=[chat], outputs=[audio_output]
        ).success(
            fn=lambda: np.array([], dtype=np.int16), outputs=[audio_buffer]
        ).success(
            fn=lambda: {"words": [], "not_confirmed": 0, "last_cutoff": 0, "text": ""}, outputs=[transcript]
        )

        if stt.streaming:
            audio_input.stream(
                stt.process_audio_chunk,
                inputs=[audio_input, audio_buffer, transcript],
                outputs=[transcript, audio_buffer, message],
                show_progress="hidden",
            )
            audio_input.stop_recording(fn=lambda: gr.update(interactive=True), outputs=[send_btn])
        else:
            audio_input.stop_recording(fn=stt.speech_to_text_full, inputs=[audio_input], outputs=[message]).success(
                fn=lambda: gr.update(interactive=True), outputs=[send_btn]
            ).success(fn=lambda: None, outputs=[audio_input])

        interview_type_select.change(
            fn=lambda x: gr.update(choices=topic_lists[x], value=np.random.choice(topic_lists[x])),
            inputs=[interview_type_select],
            outputs=[topic_select],
        ).success(fn=change_code_area, inputs=[interview_type_select], outputs=[code])

        terms_checkbox.change(fn=lambda x: gr.update(interactive=x), inputs=[terms_checkbox], outputs=[start_btn])
    return problem_tab