Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
File size: 5,658 Bytes
fb03edc e12b285 fb03edc c756257 fb03edc 324d83a fb03edc e12b285 9f4cedf e12b285 9f4cedf e12b285 9f4cedf e12b285 f02aeda 5d590b7 fb03edc e12b285 fb03edc 9f4cedf fb03edc 9f4cedf fb03edc 9f4cedf fb03edc 9f4cedf fb03edc 9f4cedf fb03edc a5bc3b5 ff7e723 a5bc3b5 ff7e723 fb03edc 437e3cd 9f4cedf fb03edc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 |
import json
import os
import random
import string
import time
from collections import defaultdict
from typing import Dict, Optional, Tuple
from openai import OpenAI
from api.llm import LLMManager
from utils.config import Config
from resources.data import fixed_messages, topic_lists
from resources.prompts import prompts
from tests.testing_prompts import candidate_prompt
def complete_interview(
interview_type: str,
exp_name: str,
llm_config: Optional[Config] = None,
requirements: str = "",
difficulty: str = "",
topic: str = "",
model: str = "gpt-3.5-turbo",
pause: int = 0,
mode: str = "normal",
max_messages: Optional[int] = None,
) -> Tuple[str, Dict]:
"""
Complete an interview and record the results with additional strange use cases.
:param interview_type: Type of interview to complete.
:param exp_name: Experiment name for file saving.
:param llm_config: Optional LLM configuration.
:param requirements: Additional requirements for the interview.
:param difficulty: Difficulty level for the interview.
:param topic: Topic for the interview.
:param model: Model to use for the candidate.
:param pause: Pause duration between requests to prevent rate limits.
:param mode: Mode of operation ("normal", "empty", "gibberish", "repeat").
:param max_messages: Maximum number of messages in the conversation.
:return: Tuple containing the file path and interview data.
"""
client = OpenAI(base_url="https://api.openai.com/v1")
config = Config()
if llm_config:
config.llm = llm_config
llm = LLMManager(config, prompts)
llm_name = config.llm.name
print(f"Starting evaluation interviewer LLM: {llm_name}, candidate LLM: {model}, interview type: {interview_type}")
# Select a random topic or difficulty if not provided
topic = topic or random.choice(topic_lists[interview_type])
difficulty = difficulty or random.choice(["easy", "medium", "hard"])
for problem_statement_text in llm.get_problem(requirements, difficulty, topic, interview_type):
pass
interview_data = defaultdict(
lambda: None,
{
"interviewer_llm": llm_name,
"candidate_llm": model,
"inputs": {
"interview_type": interview_type,
"difficulty": difficulty,
"topic": topic,
"requirements": requirements,
},
"problem_statement": problem_statement_text,
"transcript": [],
"feedback": None,
"average_response_time_seconds": 0,
},
)
# Initialize interviewer and candidate messages
messages_interviewer = llm.init_bot(problem_statement_text, interview_type)
chat_display = [[None, fixed_messages["start"]]]
messages_candidate = [
{"role": "system", "content": candidate_prompt},
{"role": "user", "content": f"Your problem: {problem_statement_text}"},
{"role": "user", "content": chat_display[-1][1]},
]
response_times = []
previous_code = ""
if max_messages is None:
max_messages = 30 if mode == "normal" else 5
for _ in range(max_messages):
if mode == "empty":
response_content = ""
elif mode == "gibberish":
response_content = "".join(random.choices(string.ascii_letters + string.digits, k=50))
elif mode == "repeat":
response_content = chat_display[-1][1]
else: # normal mode
response = client.chat.completions.create(
model=model, messages=messages_candidate, temperature=1, response_format={"type": "json_object"}
)
response_json = json.loads(response.choices[0].message.content)
response_content = response_json.get("message", "")
candidate_message = response_content
if not candidate_message and mode != "empty":
print("No message in response")
continue
messages_candidate.append({"role": "assistant", "content": candidate_message})
interview_data["transcript"].append(f"CANDIDATE MESSAGE: {candidate_message}")
chat_display.append([candidate_message, None])
send_time = time.time()
for messages_interviewer, chat_display, previous_code in llm.send_request(
candidate_message, previous_code, messages_interviewer, chat_display
):
pass
response_times.append(time.time() - send_time)
messages_candidate.append({"role": "user", "content": chat_display[-1][1]})
message_split = messages_interviewer[-1]["content"].split("#NOTES#")
interview_data["transcript"].append(f"INTERVIEWER MESSAGE: {message_split[0]}")
if len(message_split) > 1:
interview_data["transcript"].append(f"INTERVIEWER HIDDEN NOTE: {message_split[1]}")
time.sleep(pause) # to prevent exceeding rate limits
for fb in llm.end_interview(problem_statement_text, messages_interviewer, interview_type):
interview_data["feedback"] = fb
interview_data["average_response_time_seconds"] = round(sum(response_times) / len(response_times), 2) if response_times else 0
current_time = time.strftime("%Y%m%d-%H%M%S")
random_suffix = "".join(random.choices(string.ascii_letters + string.digits, k=10))
file_path = os.path.join("records", exp_name, f"{current_time}-{random_suffix}.json")
os.makedirs(os.path.dirname(file_path), exist_ok=True)
with open(file_path, "w") as file:
json.dump(interview_data, file, indent=4)
return file_path, interview_data
|