File size: 5,658 Bytes
fb03edc
 
 
 
 
 
e12b285
fb03edc
 
 
c756257
fb03edc
 
324d83a
fb03edc
 
e12b285
 
 
 
 
 
 
 
 
9f4cedf
 
e12b285
 
9f4cedf
e12b285
 
 
 
 
 
 
 
 
9f4cedf
 
e12b285
 
f02aeda
5d590b7
 
 
fb03edc
 
e12b285
fb03edc
 
 
 
9f4cedf
 
fb03edc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9f4cedf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fb03edc
 
9f4cedf
fb03edc
9f4cedf
fb03edc
 
 
 
9f4cedf
 
 
 
 
fb03edc
 
 
a5bc3b5
 
ff7e723
a5bc3b5
 
ff7e723
fb03edc
437e3cd
 
9f4cedf
 
 
fb03edc
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
import json
import os
import random
import string
import time
from collections import defaultdict
from typing import Dict, Optional, Tuple

from openai import OpenAI
from api.llm import LLMManager
from utils.config import Config
from resources.data import fixed_messages, topic_lists
from resources.prompts import prompts
from tests.testing_prompts import candidate_prompt


def complete_interview(
    interview_type: str,
    exp_name: str,
    llm_config: Optional[Config] = None,
    requirements: str = "",
    difficulty: str = "",
    topic: str = "",
    model: str = "gpt-3.5-turbo",
    pause: int = 0,
    mode: str = "normal",
    max_messages: Optional[int] = None,
) -> Tuple[str, Dict]:
    """
    Complete an interview and record the results with additional strange use cases.

    :param interview_type: Type of interview to complete.
    :param exp_name: Experiment name for file saving.
    :param llm_config: Optional LLM configuration.
    :param requirements: Additional requirements for the interview.
    :param difficulty: Difficulty level for the interview.
    :param topic: Topic for the interview.
    :param model: Model to use for the candidate.
    :param pause: Pause duration between requests to prevent rate limits.
    :param mode: Mode of operation ("normal", "empty", "gibberish", "repeat").
    :param max_messages: Maximum number of messages in the conversation.
    :return: Tuple containing the file path and interview data.
    """
    client = OpenAI(base_url="https://api.openai.com/v1")
    config = Config()
    if llm_config:
        config.llm = llm_config
    llm = LLMManager(config, prompts)
    llm_name = config.llm.name
    print(f"Starting evaluation interviewer LLM: {llm_name}, candidate LLM: {model}, interview type: {interview_type}")
    # Select a random topic or difficulty if not provided
    topic = topic or random.choice(topic_lists[interview_type])
    difficulty = difficulty or random.choice(["easy", "medium", "hard"])

    for problem_statement_text in llm.get_problem(requirements, difficulty, topic, interview_type):
        pass

    interview_data = defaultdict(
        lambda: None,
        {
            "interviewer_llm": llm_name,
            "candidate_llm": model,
            "inputs": {
                "interview_type": interview_type,
                "difficulty": difficulty,
                "topic": topic,
                "requirements": requirements,
            },
            "problem_statement": problem_statement_text,
            "transcript": [],
            "feedback": None,
            "average_response_time_seconds": 0,
        },
    )
    # Initialize interviewer and candidate messages
    messages_interviewer = llm.init_bot(problem_statement_text, interview_type)
    chat_display = [[None, fixed_messages["start"]]]

    messages_candidate = [
        {"role": "system", "content": candidate_prompt},
        {"role": "user", "content": f"Your problem: {problem_statement_text}"},
        {"role": "user", "content": chat_display[-1][1]},
    ]

    response_times = []
    previous_code = ""

    if max_messages is None:
        max_messages = 30 if mode == "normal" else 5

    for _ in range(max_messages):
        if mode == "empty":
            response_content = ""
        elif mode == "gibberish":
            response_content = "".join(random.choices(string.ascii_letters + string.digits, k=50))
        elif mode == "repeat":
            response_content = chat_display[-1][1]
        else:  # normal mode
            response = client.chat.completions.create(
                model=model, messages=messages_candidate, temperature=1, response_format={"type": "json_object"}
            )
            response_json = json.loads(response.choices[0].message.content)
            response_content = response_json.get("message", "")

        candidate_message = response_content

        if not candidate_message and mode != "empty":
            print("No message in response")
            continue

        messages_candidate.append({"role": "assistant", "content": candidate_message})

        interview_data["transcript"].append(f"CANDIDATE MESSAGE: {candidate_message}")

        chat_display.append([candidate_message, None])

        send_time = time.time()
        for messages_interviewer, chat_display, previous_code in llm.send_request(
            candidate_message, previous_code, messages_interviewer, chat_display
        ):
            pass

        response_times.append(time.time() - send_time)

        messages_candidate.append({"role": "user", "content": chat_display[-1][1]})

        message_split = messages_interviewer[-1]["content"].split("#NOTES#")
        interview_data["transcript"].append(f"INTERVIEWER MESSAGE: {message_split[0]}")

        if len(message_split) > 1:
            interview_data["transcript"].append(f"INTERVIEWER HIDDEN NOTE: {message_split[1]}")

        time.sleep(pause)  # to prevent exceeding rate limits

    for fb in llm.end_interview(problem_statement_text, messages_interviewer, interview_type):
        interview_data["feedback"] = fb

    interview_data["average_response_time_seconds"] = round(sum(response_times) / len(response_times), 2) if response_times else 0

    current_time = time.strftime("%Y%m%d-%H%M%S")
    random_suffix = "".join(random.choices(string.ascii_letters + string.digits, k=10))
    file_path = os.path.join("records", exp_name, f"{current_time}-{random_suffix}.json")

    os.makedirs(os.path.dirname(file_path), exist_ok=True)

    with open(file_path, "w") as file:
        json.dump(interview_data, file, indent=4)

    return file_path, interview_data