Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
# to use analytics tools you need to install some extra libraries | |
# !pip install pandas | |
from tests.candidate import complete_interview | |
from tests.grader import grade | |
import pandas as pd | |
from functools import partial | |
import concurrent.futures | |
import os | |
from IPython.display import display | |
def complete_and_grade(interview_params, exp_name="GPT4", grader_model="gpt-4-turbo", candidate_model="gpt-3.5-turbo"): | |
interview_type, attempt_num = interview_params | |
feedback = {} | |
try: | |
file_path, _ = complete_interview(interview_type, exp_name, model=candidate_model) | |
feedback = grade(file_path, grader_model) | |
# Just a heuristic check of the JSON format TODO: add a proper check | |
if "problem_statement_topic" not in feedback: | |
raise Exception("Grading failed") | |
print(f"Attempt {attempt_num + 1} of {interview_type} completed successfully") | |
print(f"Overall score: {feedback['overall_score']}") | |
except Exception as e: | |
print(f"Attempt {attempt_num + 1} of {interview_type} failed with error: {e}") | |
return feedback | |
def run_evaluation( | |
exp_name, | |
num=5, | |
interview_types=["ml_design", "math", "ml_theory", "system_design", "sql", "coding"], | |
grader_model="gpt-4-turbo", | |
candidate_model="gpt-3.5-turbo", | |
num_workers=3, | |
): | |
exp_name = f"{exp_name}_{pd.Timestamp.now().strftime('%Y-%m-%d_%H-%M-%S')}" | |
os.makedirs(f"records/{exp_name}", exist_ok=True) | |
tasks = [(interview_type, i) for i in range(num) for interview_type in interview_types] | |
complete_f = partial(complete_and_grade, exp_name=exp_name, grader_model=grader_model, candidate_model=candidate_model) | |
with concurrent.futures.ThreadPoolExecutor(max_workers=num_workers) as executor: | |
results = list(executor.map(complete_f, tasks)) | |
# Filter out empty results and count them | |
non_empty_results = [res for res in results if res] | |
empty_count = len(results) - len(non_empty_results) | |
print(f"Number of empty results (errors or failed grading): {empty_count}") | |
# Store non-empty results in a DataFrame | |
df = pd.DataFrame(non_empty_results) | |
df.to_csv(os.path.join("records", exp_name, "results.csv"), index=False) | |
return exp_name | |
def highlight_color(val): | |
color = "red" if val < 0.7 else "orange" if val < 0.9 else "lightgreen" if val < 0.95 else "green" | |
return f"color: {color}" | |
def generate_and_display_tables(df): | |
# Grouping by prefix | |
prefixes = ["problem", "interviewer", "feedback"] | |
prefix_columns = [col for col in df.columns if any(col.startswith(prefix) for prefix in prefixes)] | |
# Aggregated scores per stage | |
grouped_scores = {} | |
for prefix in prefixes: | |
prefix_cols = [col for col in df.columns if col.startswith(prefix)] | |
grouped_scores[prefix] = df[prefix_cols].mean(axis=1).mean() | |
grouped_scores_df = pd.DataFrame([grouped_scores]).T | |
grouped_scores_df.columns = ["avg score"] | |
grouped_scores_styled = grouped_scores_df.style.map(highlight_color) | |
grouped_scores_styled.set_caption("Aggregated Scores per Stage") | |
# Grouped by unique type | |
grouped_by_type = pd.DataFrame(df.groupby("type")[prefix_columns].mean().mean(axis=1), columns=["avg score"]) | |
grouped_by_type_styled = grouped_by_type.style.map(highlight_color) | |
grouped_by_type_styled.set_caption("Scores Grouped by Unique Type") | |
# Grouped by unique interviewer model and sorted by descending total score | |
total_llm_scores = df.groupby("agent_llm")[prefix_columns].mean().mean(axis=1).sort_values(ascending=False) | |
grouped_by_interviewer = pd.DataFrame(total_llm_scores, columns=["avg score"]) | |
grouped_by_interviewer_styled = grouped_by_interviewer.style.map(highlight_color) | |
grouped_by_interviewer_styled.set_caption("Scores Grouped by Unique Interviewer Model") | |
for prefix in prefixes: | |
prefix_cols = [col for col in prefix_columns if col.startswith(prefix)] | |
df[prefix] = df[prefix_cols].mean(axis=1) | |
# Pivot table: Agent model vs Stage | |
pivot1 = pd.pivot_table(df, values=prefixes, index="agent_llm", aggfunc="mean").reindex(total_llm_scores.index) | |
pivot1_styled = pivot1.style.map(highlight_color) | |
pivot1_styled.set_caption("Pivot Table: Agent Model vs Stage") | |
# Pivot table: Agent model vs Type (Single aggregated score per type) | |
pivot2 = pd.pivot_table(df, values="overall_score", index="agent_llm", columns="type", aggfunc="mean").reindex(total_llm_scores.index) | |
pivot2_styled = pivot2.style.map(highlight_color) | |
pivot2_styled.set_caption("Pivot Table: Agent Model vs Type") | |
# Pivot table: Type vs Stage | |
pivot3 = pd.pivot_table(df, values=prefixes, index="type", aggfunc="mean") | |
pivot3_styled = pivot3.style.map(highlight_color) | |
pivot3_styled.set_caption("Pivot Table: Type vs Stage") | |
# Pivot table: Agent Model x Stage vs Type (MultiIndex) | |
multi_index_data = [(llm, stage) for llm in total_llm_scores.index for stage in prefixes] | |
multi_index = pd.MultiIndex.from_tuples(multi_index_data, names=["agent_llm", "stage"]) | |
types = df["type"].unique() | |
pivot4_df = pd.DataFrame(index=multi_index, columns=types) | |
# Fill the DataFrame with the aggregated scores grouped by type | |
for llm in total_llm_scores.index: | |
for stage in prefixes: | |
mask = df["agent_llm"] == llm | |
stage_values = df.loc[mask, ["type", stage]].groupby("type").mean()[stage] | |
pivot4_df.loc[(llm, stage), :] = stage_values | |
pivot4_styled = pivot4_df.style.map(highlight_color) | |
pivot4_styled.set_caption("Pivot Table: Agent Model x Stage vs Type") | |
tables_dict = { | |
"grouped_scores_styled": grouped_scores_styled, | |
"grouped_by_type_styled": grouped_by_type_styled, | |
"grouped_by_interviewer_styled": grouped_by_interviewer_styled, | |
"pivot1_styled": pivot1_styled, | |
"pivot2_styled": pivot2_styled, | |
"pivot3_styled": pivot3_styled, | |
"pivot4_styled": pivot4_styled, | |
} | |
for table in tables_dict.values(): | |
display(table) | |
return tables_dict | |