interviewer / api /llm.py
IliaLarchenko's picture
Added Anthropic LLMs support
72b491a
raw
history blame
8.63 kB
import os
from openai import OpenAI
import anthropic
from utils.errors import APIError
from typing import List, Dict, Generator, Optional, Tuple
class PromptManager:
def __init__(self, prompts: Dict[str, str]):
self.prompts = prompts
self.limit = os.getenv("DEMO_WORD_LIMIT")
def add_limit(self, prompt: str) -> str:
"""
Add word limit to the prompt if specified in the environment variables.
"""
if self.limit:
prompt += f" Keep your responses very short and simple, no more than {self.limit} words."
return prompt
def get_system_prompt(self, key: str) -> str:
"""
Retrieve and limit a system prompt by its key.
"""
prompt = self.prompts[key]
return self.add_limit(prompt)
def get_problem_requirements_prompt(
self, type: str, difficulty: Optional[str] = None, topic: Optional[str] = None, requirements: Optional[str] = None
) -> str:
"""
Create a problem requirements prompt with optional parameters.
"""
prompt = f"Create a {type} problem. Difficulty: {difficulty}. Topic: {topic}. Additional requirements: {requirements}."
return self.add_limit(prompt)
class LLMManager:
def __init__(self, config, prompts: Dict[str, str]):
self.config = config
self.llm_type = config.llm.type
if self.llm_type == "ANTHROPIC_API":
self.client = anthropic.Anthropic(api_key=config.llm.key)
else:
# all other API types suppose to support OpenAI format
self.client = OpenAI(base_url=config.llm.url, api_key=config.llm.key)
self.prompt_manager = PromptManager(prompts)
self.status = self.test_llm(stream=False)
self.streaming = self.test_llm(stream=True) if self.status else False
def get_text(self, messages: List[Dict[str, str]], stream: Optional[bool] = None) -> Generator[str, None, None]:
"""
Generate text from the LLM, optionally streaming the response.
"""
if stream is None:
stream = self.streaming
try:
if self.llm_type == "OPENAI_API":
return self._get_text_openai(messages, stream)
elif self.llm_type == "ANTHROPIC_API":
return self._get_text_anthropic(messages, stream)
except Exception as e:
raise APIError(f"LLM Get Text Error: Unexpected error: {e}")
def _get_text_openai(self, messages: List[Dict[str, str]], stream: bool) -> Generator[str, None, None]:
if not stream:
response = self.client.chat.completions.create(model=self.config.llm.name, messages=messages, temperature=1, max_tokens=2000)
yield response.choices[0].message.content.strip()
else:
response = self.client.chat.completions.create(
model=self.config.llm.name, messages=messages, temperature=1, stream=True, max_tokens=2000
)
for chunk in response:
if chunk.choices[0].delta.content:
yield chunk.choices[0].delta.content
def _get_text_anthropic(self, messages: List[Dict[str, str]], stream: bool) -> Generator[str, None, None]:
# I convert the messages every time to the Anthropics format
# It is not optimal way to do it, we can instead support the messages format from the beginning
# But it duplicates the code and I don't want to do it now
system_message = None
consolidated_messages = []
for message in messages:
if message["role"] == "system":
if system_message is None:
system_message = message["content"]
else:
system_message += "\n" + message["content"]
else:
if consolidated_messages and consolidated_messages[-1]["role"] == message["role"]:
consolidated_messages[-1]["content"] += "\n" + message["content"]
else:
consolidated_messages.append(message.copy())
if not stream:
response = self.client.messages.create(
model=self.config.llm.name, max_tokens=2000, temperature=1, system=system_message, messages=consolidated_messages
)
yield response.content[0].text
else:
with self.client.messages.stream(
model=self.config.llm.name, max_tokens=2000, temperature=1, system=system_message, messages=consolidated_messages
) as stream:
yield from stream.text_stream
def test_llm(self, stream=False) -> bool:
"""
Test the LLM connection with or without streaming.
"""
try:
list(
self.get_text(
[
{"role": "system", "content": "You just help me test the connection."},
{"role": "user", "content": "Hi!"},
{"role": "user", "content": "Ping!"},
],
stream=stream,
)
)
return True
except:
return False
def init_bot(self, problem: str, interview_type: str = "coding") -> List[Dict[str, str]]:
"""
Initialize the bot with a system prompt and problem description.
"""
system_prompt = self.prompt_manager.get_system_prompt(f"{interview_type}_interviewer_prompt")
return [{"role": "system", "content": f"{system_prompt}\nThe candidate is solving the following problem:\n {problem}"}]
def get_problem_prepare_messages(self, requirements: str, difficulty: str, topic: str, interview_type: str) -> List[Dict[str, str]]:
"""
Prepare messages for generating a problem based on given requirements.
"""
system_prompt = self.prompt_manager.get_system_prompt(f"{interview_type}_problem_generation_prompt")
full_prompt = self.prompt_manager.get_problem_requirements_prompt(interview_type, difficulty, topic, requirements)
return [
{"role": "system", "content": system_prompt},
{"role": "user", "content": full_prompt},
]
def get_problem(self, requirements: str, difficulty: str, topic: str, interview_type: str) -> Generator[str, None, None]:
"""
Get a problem from the LLM based on the given requirements, difficulty, and topic.
"""
messages = self.get_problem_prepare_messages(requirements, difficulty, topic, interview_type)
problem = ""
for text in self.get_text(messages):
problem += text
yield problem
def update_chat_history(
self, code: str, previous_code: str, chat_history: List[Dict[str, str]], chat_display: List[List[Optional[str]]]
) -> List[Dict[str, str]]:
"""
Update chat history with the latest user message and code.
"""
message = chat_display[-1][0]
if code != previous_code:
message += "\nMY NOTES AND CODE:\n" + code
chat_history.append({"role": "user", "content": message})
return chat_history
def end_interview_prepare_messages(
self, problem_description: str, chat_history: List[Dict[str, str]], interview_type: str
) -> List[Dict[str, str]]:
"""
Prepare messages to end the interview and generate feedback.
"""
transcript = [f"{message['role'].capitalize()}: {message['content']}" for message in chat_history[1:]]
system_prompt = self.prompt_manager.get_system_prompt(f"{interview_type}_grading_feedback_prompt")
return [
{"role": "system", "content": system_prompt},
{"role": "user", "content": f"The original problem to solve: {problem_description}"},
{"role": "user", "content": "\n\n".join(transcript)},
{"role": "user", "content": "Grade the interview based on the transcript provided and give feedback."},
]
def end_interview(
self, problem_description: str, chat_history: List[Dict[str, str]], interview_type: str = "coding"
) -> Generator[str, None, None]:
"""
End the interview and get feedback from the LLM.
"""
if len(chat_history) <= 2:
yield "No interview history available"
return
messages = self.end_interview_prepare_messages(problem_description, chat_history, interview_type)
feedback = ""
for text in self.get_text(messages):
feedback += text
yield feedback