Spaces:
Sleeping
Sleeping
File size: 8,634 Bytes
4e6ea87 3667c7a 72b491a 44800eb e12b285 44800eb 3667c7a 9fc1785 e12b285 9fc1785 e12b285 e4558ca 9fc1785 e12b285 e4558ca 9fc1785 e12b285 e4558ca 9fc1785 3667c7a e12b285 3667c7a 72b491a 9fc1785 3667c7a e4558ca d6cd6c2 e4558ca d6cd6c2 72b491a d6cd6c2 72b491a e4558ca 44800eb e4558ca 44800eb d6cd6c2 3667c7a e12b285 e4558ca 9fc1785 e12b285 4e6ea87 e12b285 e4558ca 9fc1785 e12b285 9fc1785 8d3b67a e4558ca 9fc1785 eee97a9 3667c7a e12b285 e4558ca 82598a2 3667c7a e12b285 3667c7a 78654a1 e12b285 e4558ca 44800eb 9fc1785 e12b285 1f19f64 44800eb e4558ca e12b285 e4558ca d6cd6c2 e4558ca e12b285 eee97a9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 |
import os
from openai import OpenAI
import anthropic
from utils.errors import APIError
from typing import List, Dict, Generator, Optional, Tuple
class PromptManager:
def __init__(self, prompts: Dict[str, str]):
self.prompts = prompts
self.limit = os.getenv("DEMO_WORD_LIMIT")
def add_limit(self, prompt: str) -> str:
"""
Add word limit to the prompt if specified in the environment variables.
"""
if self.limit:
prompt += f" Keep your responses very short and simple, no more than {self.limit} words."
return prompt
def get_system_prompt(self, key: str) -> str:
"""
Retrieve and limit a system prompt by its key.
"""
prompt = self.prompts[key]
return self.add_limit(prompt)
def get_problem_requirements_prompt(
self, type: str, difficulty: Optional[str] = None, topic: Optional[str] = None, requirements: Optional[str] = None
) -> str:
"""
Create a problem requirements prompt with optional parameters.
"""
prompt = f"Create a {type} problem. Difficulty: {difficulty}. Topic: {topic}. Additional requirements: {requirements}."
return self.add_limit(prompt)
class LLMManager:
def __init__(self, config, prompts: Dict[str, str]):
self.config = config
self.llm_type = config.llm.type
if self.llm_type == "ANTHROPIC_API":
self.client = anthropic.Anthropic(api_key=config.llm.key)
else:
# all other API types suppose to support OpenAI format
self.client = OpenAI(base_url=config.llm.url, api_key=config.llm.key)
self.prompt_manager = PromptManager(prompts)
self.status = self.test_llm(stream=False)
self.streaming = self.test_llm(stream=True) if self.status else False
def get_text(self, messages: List[Dict[str, str]], stream: Optional[bool] = None) -> Generator[str, None, None]:
"""
Generate text from the LLM, optionally streaming the response.
"""
if stream is None:
stream = self.streaming
try:
if self.llm_type == "OPENAI_API":
return self._get_text_openai(messages, stream)
elif self.llm_type == "ANTHROPIC_API":
return self._get_text_anthropic(messages, stream)
except Exception as e:
raise APIError(f"LLM Get Text Error: Unexpected error: {e}")
def _get_text_openai(self, messages: List[Dict[str, str]], stream: bool) -> Generator[str, None, None]:
if not stream:
response = self.client.chat.completions.create(model=self.config.llm.name, messages=messages, temperature=1, max_tokens=2000)
yield response.choices[0].message.content.strip()
else:
response = self.client.chat.completions.create(
model=self.config.llm.name, messages=messages, temperature=1, stream=True, max_tokens=2000
)
for chunk in response:
if chunk.choices[0].delta.content:
yield chunk.choices[0].delta.content
def _get_text_anthropic(self, messages: List[Dict[str, str]], stream: bool) -> Generator[str, None, None]:
# I convert the messages every time to the Anthropics format
# It is not optimal way to do it, we can instead support the messages format from the beginning
# But it duplicates the code and I don't want to do it now
system_message = None
consolidated_messages = []
for message in messages:
if message["role"] == "system":
if system_message is None:
system_message = message["content"]
else:
system_message += "\n" + message["content"]
else:
if consolidated_messages and consolidated_messages[-1]["role"] == message["role"]:
consolidated_messages[-1]["content"] += "\n" + message["content"]
else:
consolidated_messages.append(message.copy())
if not stream:
response = self.client.messages.create(
model=self.config.llm.name, max_tokens=2000, temperature=1, system=system_message, messages=consolidated_messages
)
yield response.content[0].text
else:
with self.client.messages.stream(
model=self.config.llm.name, max_tokens=2000, temperature=1, system=system_message, messages=consolidated_messages
) as stream:
yield from stream.text_stream
def test_llm(self, stream=False) -> bool:
"""
Test the LLM connection with or without streaming.
"""
try:
list(
self.get_text(
[
{"role": "system", "content": "You just help me test the connection."},
{"role": "user", "content": "Hi!"},
{"role": "user", "content": "Ping!"},
],
stream=stream,
)
)
return True
except:
return False
def init_bot(self, problem: str, interview_type: str = "coding") -> List[Dict[str, str]]:
"""
Initialize the bot with a system prompt and problem description.
"""
system_prompt = self.prompt_manager.get_system_prompt(f"{interview_type}_interviewer_prompt")
return [{"role": "system", "content": f"{system_prompt}\nThe candidate is solving the following problem:\n {problem}"}]
def get_problem_prepare_messages(self, requirements: str, difficulty: str, topic: str, interview_type: str) -> List[Dict[str, str]]:
"""
Prepare messages for generating a problem based on given requirements.
"""
system_prompt = self.prompt_manager.get_system_prompt(f"{interview_type}_problem_generation_prompt")
full_prompt = self.prompt_manager.get_problem_requirements_prompt(interview_type, difficulty, topic, requirements)
return [
{"role": "system", "content": system_prompt},
{"role": "user", "content": full_prompt},
]
def get_problem(self, requirements: str, difficulty: str, topic: str, interview_type: str) -> Generator[str, None, None]:
"""
Get a problem from the LLM based on the given requirements, difficulty, and topic.
"""
messages = self.get_problem_prepare_messages(requirements, difficulty, topic, interview_type)
problem = ""
for text in self.get_text(messages):
problem += text
yield problem
def update_chat_history(
self, code: str, previous_code: str, chat_history: List[Dict[str, str]], chat_display: List[List[Optional[str]]]
) -> List[Dict[str, str]]:
"""
Update chat history with the latest user message and code.
"""
message = chat_display[-1][0]
if code != previous_code:
message += "\nMY NOTES AND CODE:\n" + code
chat_history.append({"role": "user", "content": message})
return chat_history
def end_interview_prepare_messages(
self, problem_description: str, chat_history: List[Dict[str, str]], interview_type: str
) -> List[Dict[str, str]]:
"""
Prepare messages to end the interview and generate feedback.
"""
transcript = [f"{message['role'].capitalize()}: {message['content']}" for message in chat_history[1:]]
system_prompt = self.prompt_manager.get_system_prompt(f"{interview_type}_grading_feedback_prompt")
return [
{"role": "system", "content": system_prompt},
{"role": "user", "content": f"The original problem to solve: {problem_description}"},
{"role": "user", "content": "\n\n".join(transcript)},
{"role": "user", "content": "Grade the interview based on the transcript provided and give feedback."},
]
def end_interview(
self, problem_description: str, chat_history: List[Dict[str, str]], interview_type: str = "coding"
) -> Generator[str, None, None]:
"""
End the interview and get feedback from the LLM.
"""
if len(chat_history) <= 2:
yield "No interview history available"
return
messages = self.end_interview_prepare_messages(problem_description, chat_history, interview_type)
feedback = ""
for text in self.get_text(messages):
feedback += text
yield feedback
|