File size: 28,505 Bytes
f57d7c6
69fb50e
 
 
 
f57d7c6
 
69fb50e
6ba25f7
f57d7c6
 
 
69fb50e
 
 
 
 
f57d7c6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
69fb50e
 
46c2bfc
 
 
69fb50e
 
 
 
 
 
 
 
46c2bfc
 
 
69fb50e
 
 
f57d7c6
 
46c2bfc
 
 
f57d7c6
46c2bfc
 
 
f57d7c6
 
 
 
 
 
 
 
 
 
46c2bfc
 
f57d7c6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
46c2bfc
 
 
f57d7c6
46c2bfc
 
 
f57d7c6
 
 
 
 
 
 
 
46c2bfc
f57d7c6
 
 
 
 
 
46c2bfc
 
 
 
 
f57d7c6
 
 
 
46c2bfc
 
f57d7c6
 
 
 
 
 
 
 
 
46c2bfc
f57d7c6
 
 
 
 
46c2bfc
f57d7c6
 
 
 
 
 
46c2bfc
f57d7c6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
46c2bfc
 
 
f57d7c6
 
 
 
 
46c2bfc
f57d7c6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
46c2bfc
f57d7c6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
69fb50e
 
 
 
f57d7c6
46c2bfc
f57d7c6
46c2bfc
f57d7c6
 
 
 
 
 
 
 
 
46c2bfc
 
 
f57d7c6
 
 
 
 
 
 
 
 
69fb50e
46c2bfc
69fb50e
6ba25f7
46c2bfc
69fb50e
 
6ba25f7
69fb50e
f57d7c6
6ba25f7
69fb50e
 
f57d7c6
 
69fb50e
46c2bfc
 
69fb50e
46c2bfc
69fb50e
 
 
 
 
46c2bfc
 
 
69fb50e
 
 
 
 
 
 
 
f57d7c6
 
69fb50e
 
46c2bfc
69fb50e
f57d7c6
69fb50e
 
 
 
 
46c2bfc
69fb50e
 
 
 
 
 
 
 
 
 
 
 
 
f57d7c6
69fb50e
 
 
 
 
 
 
 
 
 
 
 
 
 
46c2bfc
 
f57d7c6
46c2bfc
69fb50e
 
f57d7c6
 
 
 
 
 
46c2bfc
f57d7c6
69fb50e
 
 
f57d7c6
 
 
 
 
 
 
 
 
 
 
 
 
69fb50e
 
f57d7c6
46c2bfc
f57d7c6
 
 
 
 
 
 
46c2bfc
f57d7c6
 
 
 
 
 
 
 
 
 
 
 
 
edc20ac
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6ba25f7
 
 
 
 
 
 
 
 
edc20ac
 
 
 
6ba25f7
edc20ac
 
6ba25f7
46c2bfc
f57d7c6
 
edc20ac
f57d7c6
edc20ac
 
 
 
 
6ba25f7
edc20ac
 
6ba25f7
edc20ac
 
6ba25f7
edc20ac
 
 
 
 
 
 
 
6ba25f7
edc20ac
6ba25f7
edc20ac
 
 
 
6ba25f7
edc20ac
 
 
 
6ba25f7
 
edc20ac
 
 
f57d7c6
6ba25f7
 
edc20ac
 
 
 
 
6ba25f7
edc20ac
 
6ba25f7
edc20ac
46c2bfc
 
edc20ac
f57d7c6
edc20ac
f57d7c6
 
 
edc20ac
f57d7c6
edc20ac
 
f57d7c6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
46c2bfc
f57d7c6
 
 
 
 
 
 
 
 
46c2bfc
 
 
 
f57d7c6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
edc20ac
 
f57d7c6
 
 
edc20ac
 
46c2bfc
edc20ac
 
 
6ba25f7
edc20ac
f57d7c6
 
 
 
edc20ac
 
46c2bfc
f57d7c6
edc20ac
 
 
 
f57d7c6
 
edc20ac
 
f57d7c6
 
edc20ac
f57d7c6
edc20ac
 
 
 
 
 
 
 
 
 
 
 
6ba25f7
edc20ac
f57d7c6
 
 
edc20ac
 
 
 
6ba25f7
 
edc20ac
6ba25f7
edc20ac
 
 
 
 
 
 
6ba25f7
 
 
edc20ac
 
6ba25f7
 
 
69fb50e
 
 
 
f57d7c6
69fb50e
 
 
46c2bfc
69fb50e
 
f57d7c6
 
 
 
69fb50e
 
f57d7c6
69fb50e
81bf9b4
69fb50e
 
 
81bf9b4
69fb50e
 
 
 
 
 
dc53b3a
69fb50e
 
 
 
 
 
 
 
 
 
 
46c2bfc
f57d7c6
 
 
 
 
69fb50e
 
 
46c2bfc
69fb50e
 
f57d7c6
edc20ac
 
6ba25f7
f57d7c6
6ba25f7
69fb50e
 
f57d7c6
 
69fb50e
 
 
dc53b3a
 
69fb50e
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
#include "build-info.h"
#include "common.h"
#include "llama.h"

#include <cmath>
#include <cstdio>
#include <cstring>
#include <ctime>
#include <sstream>
#include <thread>
#include <mutex>
#include <vector>

#if defined(_MSC_VER)
#pragma warning(disable: 4244 4267) // possible loss of data
#endif

struct results_perplexity {
    std::vector<llama_token> tokens;
    double                   ppl_value;
    std::vector<float>       logits;
    std::vector<float>       probs;
};

struct results_log_softmax {
    double log_softmax;
    float  logit;
    float  prob;
};

static void write_logfile(
    const llama_context * ctx, const gpt_params & params, const llama_model * model,
    const struct results_perplexity & results
) {
    if (params.logdir.empty()) {
        return;
    }

    if (params.hellaswag) {
        fprintf(stderr, "%s: warning: logging results is not implemented for HellaSwag. No files will be written.\n", __func__);
        return;
    }

    const std::string timestamp = get_sortable_timestamp();

    const bool success = create_directory_with_parents(params.logdir);
    if (!success) {
        fprintf(stderr, "%s: warning: failed to create logdir %s, cannot write logfile\n",
                __func__, params.logdir.c_str());
        return;
    }

    const std::string logfile_path = params.logdir + timestamp + ".yml";
    FILE * logfile = fopen(logfile_path.c_str(), "w");

    if (logfile == NULL) {
        fprintf(stderr, "%s: failed to open logfile %s\n", __func__, logfile_path.c_str());
        return;
    }

    fprintf(logfile, "binary: main\n");
    char model_desc[128];
    llama_model_desc(model, model_desc, sizeof(model_desc));
    dump_non_result_info_yaml(logfile, params, ctx, timestamp, results.tokens, model_desc);

    fprintf(logfile, "\n");
    fprintf(logfile, "######################\n");
    fprintf(logfile, "# Perplexity Results #\n");
    fprintf(logfile, "######################\n");
    fprintf(logfile, "\n");

    dump_vector_float_yaml(logfile, "logits", results.logits);
    fprintf(logfile, "ppl_value: %f\n", results.ppl_value);
    dump_vector_float_yaml(logfile, "probs", results.probs);

    llama_dump_timing_info_yaml(logfile, ctx);
    fclose(logfile);
}

static std::vector<float> softmax(const std::vector<float>& logits) {
    std::vector<float> probs(logits.size());
    float max_logit = logits[0];
    for (float v : logits) {
        max_logit = std::max(max_logit, v);
    }
    double sum_exp = 0.0;
    for (size_t i = 0; i < logits.size(); i++) {
        // Subtract the maximum logit value from the current logit value for numerical stability
        const float logit = logits[i] - max_logit;
        const float exp_logit = expf(logit);
        sum_exp += exp_logit;
        probs[i] = exp_logit;
    }
    for (size_t i = 0; i < probs.size(); i++) {
        probs[i] /= sum_exp;
    }
    return probs;
}

static results_log_softmax log_softmax(int n_vocab, const float * logits, int tok) {
    float max_logit = logits[0];
    for (int i = 1; i < n_vocab; ++i) {
        max_logit = std::max(max_logit, logits[i]);
    }
    double sum_exp = 0.0;
    for (int i = 0; i < n_vocab; ++i) {
        sum_exp += expf(logits[i] - max_logit);
    }
    return {logits[tok] - max_logit - log(sum_exp), logits[tok], expf(logits[tok] - max_logit) / (float) sum_exp};
}

static void process_logits(
    int n_vocab, const float * logits, const int * tokens, int n_token, std::vector<std::thread> & workers,
    double & nll, double & nll2, float * logit_history, float * prob_history
) {
    std::mutex mutex;
    int counter = 0;
    auto compute = [&mutex, &counter, &nll, &nll2, logit_history, prob_history, n_vocab, logits, tokens, n_token] () {
        double local_nll  = 0;
        double local_nll2 = 0;
        while (true) {
            std::unique_lock<std::mutex> lock(mutex);
            int i = counter++;
            if (i >= n_token) {
                nll += local_nll; nll2 += local_nll2;
                break;
            }
            lock.unlock();
            const results_log_softmax results = log_softmax(n_vocab, logits + i*n_vocab, tokens[i+1]);
            const double v = -results.log_softmax;
            local_nll += v;
            local_nll2 += v*v;

            logit_history[i] = results.logit;
            prob_history[i]  = results.prob;
        }
    };
    for (auto & w : workers) {
        w = std::thread(compute);
    }
    compute();
    for (auto & w : workers) {
        w.join();
    }
}

static results_perplexity perplexity_v2(llama_context * ctx, const gpt_params & params) {
    // Download: https://s3.amazonaws.com/research.metamind.io/wikitext/wikitext-2-raw-v1.zip?ref=salesforce-research
    // Run `./perplexity -m models/7B/ggml-model-q4_0.bin -f wiki.test.raw`
    // Output: `perplexity: 13.5106 [114/114]`
    // BOS tokens will be added for each chunk before eval

    const bool is_spm = llama_vocab_type(llama_get_model(ctx)) == LLAMA_VOCAB_TYPE_SPM;
    const bool add_bos = is_spm;

    fprintf(stderr, "%s: tokenizing the input ..\n", __func__);

    std::vector<llama_token> tokens = ::llama_tokenize(ctx, params.prompt, add_bos);

    const int n_ctx = llama_n_ctx(ctx);

    if (int(tokens.size()) < 2*n_ctx) {
        fprintf(stderr, "%s: you need at least %d tokens to evaluate perplexity with a context of %d\n",__func__,2*n_ctx,
                n_ctx);
        fprintf(stderr, "%s: the data file you provided tokenizes to only %zu tokens\n",__func__,tokens.size());
        return {std::move(tokens), 0., {}, {}};
    }

    std::vector<float> logit_history;
    std::vector<float> prob_history;

    logit_history.resize(tokens.size());
    prob_history.resize(tokens.size());

    if (params.ppl_stride <= 0) {
        fprintf(stderr, "%s: stride is %d but must be greater than zero!\n",__func__,params.ppl_stride);
        return {tokens, -1, logit_history, prob_history};
    }

    const int calc_chunk = n_ctx;

    fprintf(stderr, "%s: have %zu tokens. Calculation chunk = %d\n", __func__, tokens.size(), calc_chunk);

    if (int(tokens.size()) <= calc_chunk) {
        fprintf(stderr, "%s: there are only %zu tokens, this is not enough for a context size of %d and stride %d\n",__func__,
                tokens.size(), n_ctx, params.ppl_stride);
        return {tokens, -1, logit_history, prob_history};
    }

    const int n_chunk_max = (tokens.size() - calc_chunk + params.ppl_stride - 1)  / params.ppl_stride;

    const int n_chunk = params.n_chunks < 0 ? n_chunk_max : std::min(params.n_chunks, n_chunk_max);
    const int n_vocab = llama_n_vocab(llama_get_model(ctx));
    const int n_batch = params.n_batch;

    int count = 0;
    double nll = 0.0;

    fprintf(stderr, "%s: calculating perplexity over %d chunks, batch_size=%d\n", __func__, n_chunk, n_batch);

    for (int i = 0; i < n_chunk; ++i) {
        const int start =     i * params.ppl_stride;
        const int end   = start + calc_chunk;

        const int num_batches = (calc_chunk + n_batch - 1) / n_batch;
        //fprintf(stderr, "%s: evaluating %d...%d using %d batches\n", __func__, start, end, num_batches);

        std::vector<float> logits;

        const auto t_start = std::chrono::high_resolution_clock::now();

        // clear the KV cache
        llama_kv_cache_tokens_rm(ctx, -1, -1);

        for (int j = 0; j < num_batches; ++j) {
            const int batch_start = start + j * n_batch;
            const int batch_size  = std::min(end - batch_start, n_batch);

            //fprintf(stderr, "    Batch %d: starts at %d, size is %d, n_past is %d\n",j,batch_start,batch_size,j * n_batch);
            if (llama_decode(ctx, llama_batch_get_one(tokens.data() + batch_start, batch_size, j * n_batch, 0))) {
                //fprintf(stderr, "%s : failed to eval\n", __func__);
                return {tokens, -1, logit_history, prob_history};
            }

            // save original token and restore it after eval
            const auto token_org = tokens[batch_start];

            // add BOS token for the first batch of each chunk
            if (add_bos && j == 0) {
                tokens[batch_start] = llama_token_bos(ctx);
            }

            const auto batch_logits = llama_get_logits(ctx);
            logits.insert(logits.end(), batch_logits, batch_logits + batch_size * n_vocab);

            if (j == 0) {
                tokens[batch_start] = token_org;
            }
        }

        const auto t_end = std::chrono::high_resolution_clock::now();

        if (i == 0) {
            const float t_total = std::chrono::duration<float>(t_end - t_start).count();
            fprintf(stderr, "%s: %.2f seconds per pass - ETA ", __func__, t_total);
            int total_seconds = (int)(t_total * n_chunk);
            if (total_seconds >= 60*60) {
                fprintf(stderr, "%d hours ", total_seconds / (60*60));
                total_seconds = total_seconds % (60*60);
            }
            fprintf(stderr, "%.2f minutes\n", total_seconds / 60.0);
        }

        //fprintf(stderr, "%s: using tokens %d...%d\n",__func__,params.n_ctx - params.ppl_stride + start, params.n_ctx + start);
        for (int j = n_ctx - params.ppl_stride - 1; j < n_ctx - 1; ++j) {

            // Calculate probability of next token, given the previous ones.
            const std::vector<float> tok_logits(
                logits.begin() + (j + 0) * n_vocab,
                logits.begin() + (j + 1) * n_vocab);

            const float prob = softmax(tok_logits)[tokens[start + j + 1]];
            logit_history[start + j + 1] = tok_logits[tokens[start + j + 1]];
            prob_history[start + j + 1]  = prob;

            nll += -std::log(prob);
            ++count;
        }
        // perplexity is e^(average negative log-likelihood)
        if (params.ppl_output_type == 0) {
            printf("[%d]%.4lf,", i + 1, std::exp(nll / count));
        } else {
            printf("%8d  %.4lf\n", i*params.ppl_stride, std::exp(nll / count));
        }
        fflush(stdout);
    }
    printf("\n");

    return {tokens, std::exp(nll / count), logit_history, prob_history};
}

static results_perplexity perplexity(llama_context * ctx, const gpt_params & params) {
    if (params.ppl_stride > 0) {
        return perplexity_v2(ctx, params);
    }

    // Download: https://s3.amazonaws.com/research.metamind.io/wikitext/wikitext-2-raw-v1.zip?ref=salesforce-research
    // Run `./perplexity -m models/7B/ggml-model-q4_0.bin -f wiki.test.raw`
    // Output: `perplexity: 13.5106 [114/114]`
    // BOS tokens will be added for each chunk before eval

    const bool is_spm = llama_vocab_type(llama_get_model(ctx)) == LLAMA_VOCAB_TYPE_SPM;
    const bool add_bos = is_spm;
    const int n_ctx = llama_n_ctx(ctx);

    auto tim1 = std::chrono::high_resolution_clock::now();
    fprintf(stderr, "%s: tokenizing the input ..\n", __func__);

    std::vector<llama_token> tokens = ::llama_tokenize(ctx, params.prompt, add_bos);

    auto tim2 = std::chrono::high_resolution_clock::now();
    fprintf(stderr, "%s: tokenization took %g ms\n",__func__,1e-3*std::chrono::duration_cast<std::chrono::microseconds>(tim2-tim1).count());

    if (int(tokens.size()) < 2*n_ctx) {
        fprintf(stderr, "%s: you need at least %d tokens to evaluate perplexity with a context of %d\n",__func__,2*n_ctx,
                n_ctx);
        fprintf(stderr, "%s: the data file you provided tokenizes to only %zu tokens\n",__func__,tokens.size());
        return {std::move(tokens), 0., {}, {}};
    }

    std::vector<float> logit_history;
    logit_history.resize(tokens.size());

    std::vector<float> prob_history;
    prob_history.resize(tokens.size());

    const int n_chunk_max = tokens.size() / n_ctx;

    const int n_chunk = params.n_chunks < 0 ? n_chunk_max : std::min(params.n_chunks, n_chunk_max);
    const int n_vocab = llama_n_vocab(llama_get_model(ctx));
    const int n_batch = params.n_batch;

    int count = 0;
    double nll = 0.0;
    double nll2 = 0.0;

    fprintf(stderr, "%s: calculating perplexity over %d chunks, batch_size=%d\n", __func__, n_chunk, n_batch);

    std::vector<std::thread> workers(std::thread::hardware_concurrency() - 1);

    for (int i = 0; i < n_chunk; ++i) {
        const int start =     i * n_ctx;
        const int end   = start + n_ctx;

        const int num_batches = (n_ctx + n_batch - 1) / n_batch;

        std::vector<float> logits;

        const auto t_start = std::chrono::high_resolution_clock::now();

        // clear the KV cache
        llama_kv_cache_tokens_rm(ctx, -1, -1);

        for (int j = 0; j < num_batches; ++j) {
            const int batch_start = start + j * n_batch;
            const int batch_size  = std::min(end - batch_start, n_batch);

            // save original token and restore it after eval
            const auto token_org = tokens[batch_start];

            // add BOS token for the first batch of each chunk
            if (add_bos && j == 0) {
                tokens[batch_start] = llama_token_bos(ctx);
            }

            if (llama_decode(ctx, llama_batch_get_one(tokens.data() + batch_start, batch_size, j * n_batch, 0))) {
                fprintf(stderr, "%s : failed to eval\n", __func__);
                return {tokens, -1, logit_history, prob_history};
            }

            // restore the original token in case it was set to BOS
            tokens[batch_start] = token_org;

            const auto * batch_logits = llama_get_logits(ctx);
            logits.insert(logits.end(), batch_logits, batch_logits + batch_size * n_vocab);
        }

        const auto t_end = std::chrono::high_resolution_clock::now();

        if (i == 0) {
            const float t_total = std::chrono::duration<float>(t_end - t_start).count();
            fprintf(stderr, "%s: %.2f seconds per pass - ETA ", __func__, t_total);
            int total_seconds = (int)(t_total * n_chunk);
            if (total_seconds >= 60*60) {
                fprintf(stderr, "%d hours ", total_seconds / (60*60));
                total_seconds = total_seconds % (60*60);
            }
            fprintf(stderr, "%.2f minutes\n", total_seconds / 60.0);
        }

        // We get the logits for all the tokens in the context window (params.n_ctx)
        // from llama_eval above.  Now, based on https://huggingface.co/docs/transformers/perplexity,
        // calculate the perplexity over the last half of the window (so the model always has
        // some context to predict the token).
        //
        // We rely on the fact that attention in the forward pass only looks at previous
        // tokens here, so the logits returned for each token are an accurate representation
        // of what the model would have predicted at that point.
        //
        // Example, we have a context window of 512, we will compute perplexity for each of the
        // last 256 tokens.  Then, we split the input up into context window size chunks to
        // process the entire prompt.
        const int first = n_ctx/2;
        process_logits(n_vocab, logits.data() + first*n_vocab, tokens.data() + start + first, n_ctx - 1 - first,
                       workers, nll, nll2, logit_history.data() + start + first, prob_history.data() + start + first);
        count += n_ctx - first - 1;

        // perplexity is e^(average negative log-likelihood)
        if (params.ppl_output_type == 0) {
            printf("[%d]%.4lf,", i + 1, std::exp(nll / count));
        } else {
            double av = nll/count;
            double av2 = nll2/count - av*av;
            if (av2 > 0) av2 = sqrt(av2/(count-1));
            printf("%8d  %.4lf  %4lf  %4lf\n", i*n_ctx, std::exp(nll / count), av, av2);
        }
        fflush(stdout);
    }
    printf("\n");

    nll2 /= count;
    nll /= count;
    const double ppl = exp(nll);
    nll2 -= nll * nll;
    if (nll2 > 0) {
        nll2 = sqrt(nll2/(count-1));
        printf("Final estimate: PPL = %.4lf +/- %.5lf\n", ppl, nll2*ppl);
    } else {
        printf("Unexpected negative standard deviation of log(prob)\n");
    }

    return {tokens, ppl, logit_history, prob_history};
}

static std::vector<float> hellaswag_evaluate_tokens(
    llama_context * ctx, std::vector<int> & tokens, int n_past, int n_batch, int n_vocab
) {
    std::vector<float> result;
    result.reserve(tokens.size() * n_vocab);
    size_t n_chunk = (tokens.size() + n_batch - 1)/n_batch;
    for (size_t i_chunk = 0; i_chunk < n_chunk; ++i_chunk) {
        size_t n_tokens = tokens.size() - i_chunk * n_batch;
        n_tokens = std::min(n_tokens, size_t(n_batch));
        if (llama_decode(ctx, llama_batch_get_one(tokens.data() + i_chunk * n_batch, n_tokens, n_past, 0))) {
            fprintf(stderr, "%s : failed to eval\n", __func__);
            return {};
        }

        const auto logits = llama_get_logits(ctx);
        result.insert(result.end(), logits, logits + n_tokens * n_vocab);

        n_past += n_tokens;
    }
    return result;
}

static void hellaswag_score(llama_context * ctx, const gpt_params & params) {
    // Calculates hellaswag score (acc_norm) from prompt
    //
    // Data extracted from the HellaSwag validation dataset (MIT license) https://github.com/rowanz/hellaswag/blob/master/data/hellaswag_val.jsonl
    // All used data fields are preprocessed as in https://github.com/EleutherAI/lm-evaluation-harness/blob/df3da98c5405deafd519c2ddca52bb7c3fe36bef/lm_eval/tasks/hellaswag.py#L62-L68
    //
    // All 10042 tasks should be extracted to keep the results standardized like other implementations.
    //
    // Datafile layout:
    // ['??'] denotes json fields
    // 6 lines per task:
    // ['activity_label'] + ": " +['ctx']  - The first part of the query, the context
    // ['label'] - The index the best common sense ending aka gold ending
    // ['endings'][0] - Endings added to the first part of the query
    // ['endings'][1]
    // ['endings'][2]
    // ['endings'][3]

    std::vector<std::string> prompt_lines;
    std::istringstream strstream(params.prompt);
    std::string line;

    while (std::getline(strstream,line,'\n')) {
        prompt_lines.push_back(line);
    }

    if( prompt_lines.size() % 6 != 0) {
        fprintf(stderr, "%s : number of lines in prompt not a multiple of 6.\n", __func__);
        return;
    }

    size_t hs_task_count = prompt_lines.size()/6;
    fprintf(stderr, "%s : loaded %zu tasks from prompt.\n", __func__, hs_task_count);

    const bool is_spm = llama_vocab_type(llama_get_model(ctx)) == LLAMA_VOCAB_TYPE_SPM;
    fprintf(stderr, "================================= is_spm = %d\n", is_spm);

    // This is needed as usual for LLaMA models
    const bool add_bos = is_spm;

    // Number of tasks to use when computing the score
    if ( params.hellaswag_tasks < hs_task_count  ) {
        hs_task_count = params.hellaswag_tasks;
    }

    // The tasks should be randomized so the score stabilizes quickly.
    bool randomize_tasks = true;

    // The random seed should not impact the final result if the computation is done over enough tasks, so kept hardcoded for now
    std::mt19937 rng(1);

    // Dataholder for hellaswag tasks
    struct hs_data_t {
        std::string context;
        size_t gold_ending_idx;
        std::string ending[4];
        size_t ending_logprob_count[4];
        double ending_logprob[4];
    };

    fprintf(stderr, "%s : selecting %zu %s tasks.\n", __func__, hs_task_count, (randomize_tasks?"randomized":"the first")  );

    // Select and read data from prompt lines
    hs_data_t *hs_data = new hs_data_t[hs_task_count];
    for (size_t i=0; i < hs_task_count; i++) {
        size_t idx = i;

        // Select a random example of those left in the prompt
        if (randomize_tasks) {
            std::uniform_int_distribution<size_t> dist(0, prompt_lines.size()/6-1 ) ;
            idx = dist(rng);
        }

        hs_data[i].context = prompt_lines[idx*6];
        hs_data[i].gold_ending_idx = std::stoi( prompt_lines[idx*6+1] );
        for (size_t j=0; j < 4; j++) {
            hs_data[i].ending[j] = prompt_lines[idx*6+2+j];
        }

        // Delete the selected random example from the prompt
        if (randomize_tasks) {
            prompt_lines.erase( std::next(prompt_lines.begin(),idx*6)  , std::next(prompt_lines.begin(),idx*6+6) );
        }
    }

    fprintf(stderr, "%s : calculating hellaswag score over selected tasks.\n", __func__);
    printf("\ntask\tacc_norm\n");

    double acc = 0.0f;
    const int n_vocab = llama_n_vocab(llama_get_model(ctx));
    const int n_ctx = llama_n_ctx(ctx);

    std::vector<std::vector<int>> ending_tokens(4);

    std::vector<float> tok_logits(n_vocab);

    for (size_t task_idx = 0; task_idx < hs_task_count; task_idx++) {
        // Tokenize the context to count tokens
        std::vector<int> context_embd = ::llama_tokenize(ctx, hs_data[task_idx].context, add_bos);
        size_t context_size = context_embd.size();

        for (int i = 0; i < 4; ++i) {
            ending_tokens[i] = ::llama_tokenize(ctx, hs_data[task_idx].context + " " + hs_data[task_idx].ending[i], add_bos);
            for (int k = 0; k < int(context_size); ++k) {
                if (ending_tokens[i][k] != context_embd[k]) {
                    fprintf(stderr, "Oops: ending %d of task %d differs from context at position %d\n",i,int(task_idx),k);
                    break;
                }
            }
        }

        // Do the 1st ending
        // In this case we include the context when evaluating
        //auto query_embd = ::llama_tokenize(ctx, hs_data[task_idx].context + hs_data[task_idx].ending[0], add_bos);
        auto query_embd = ending_tokens[0];
        auto query_size = query_embd.size();

        // Stop if query wont fit the ctx window
        if (query_size > (size_t)n_ctx) {
            fprintf(stderr, "%s : number of tokens in query %zu > n_ctxl\n", __func__, query_size);
            return;
        }

        // Speedup small evaluations by evaluating atleast 32 tokens
        if (query_size < 32) {
            query_embd.resize(32);
        }

        // clear the KV cache
        llama_kv_cache_tokens_rm(ctx, -1, -1);

        auto logits = hellaswag_evaluate_tokens(ctx, query_embd, 0, params.n_batch, n_vocab);
        if (logits.empty()) {
            fprintf(stderr, "%s : failed to eval\n", __func__);
            return;
        }

        std::memcpy(tok_logits.data(), logits.data() + (context_size-1)*n_vocab, n_vocab*sizeof(float));
        const auto first_probs = softmax(tok_logits);

        hs_data[task_idx].ending_logprob_count[0] = 1;
        hs_data[task_idx].ending_logprob[0] = std::log(first_probs[query_embd[context_size]]);

        // Calculate the logprobs over the ending
        for (size_t j = context_size; j < query_size - 1; j++) {

            std::memcpy(tok_logits.data(), logits.data() + j*n_vocab, n_vocab*sizeof(float));

            const float prob = softmax(tok_logits)[query_embd[j + 1]];

            hs_data[task_idx].ending_logprob[0] += std::log(prob);
            hs_data[task_idx].ending_logprob_count[0]++;
        }

        // Calculate the mean token logprob for acc_norm
        hs_data[task_idx].ending_logprob[0] /= hs_data[task_idx].ending_logprob_count[0];

        // Do the remaining endings
        // For these, we use the bare ending with n_past = context_size
        //
        for (size_t ending_idx = 1; ending_idx < 4; ending_idx++) {

            // Tokenize the query
            query_embd.resize(ending_tokens[ending_idx].size() - context_size);
            std::memcpy(query_embd.data(), ending_tokens[ending_idx].data() + context_size, query_embd.size()*sizeof(int));
            query_size = query_embd.size();

            // Stop if query wont fit the ctx window
            if (context_size + query_size > (size_t)n_ctx) {
                fprintf(stderr, "%s : number of tokens in query %zu > n_ctxl\n", __func__, query_size);
                return;
            }

            // Speedup small evaluations by evaluating atleast 32 tokens
            // No, resizing to 32 is actually slightly slower (at least on CUDA)
            //if (query_size < 32) {
            //    query_embd.resize(32);
            //}

            // Evaluate the query
            logits = hellaswag_evaluate_tokens(ctx, query_embd, context_size, params.n_batch, n_vocab);
            if (logits.empty()) {
                fprintf(stderr, "%s : failed to eval\n", __func__);
                return;
            }

            hs_data[task_idx].ending_logprob_count[ending_idx] = 1;
            hs_data[task_idx].ending_logprob[ending_idx] = std::log(first_probs[query_embd[0]]);

            // Calculate the logprobs over the ending
            for (size_t j = 0; j < query_size - 1; j++) {
                std::memcpy(tok_logits.data(), logits.data() + j*n_vocab, n_vocab*sizeof(float));

                const float prob = softmax(tok_logits)[query_embd[j + 1]];

                hs_data[task_idx].ending_logprob[ending_idx] += std::log(prob);
                hs_data[task_idx].ending_logprob_count[ending_idx]++;
            }

            // Calculate the mean token logprob for acc_norm
            hs_data[task_idx].ending_logprob[ending_idx] /= hs_data[task_idx].ending_logprob_count[ending_idx];


//            printf("task %lu, ending %lu, whole_len %lu, context_len %lu, ending_logprob_count %lu, ending_logprob %.4f\n",
//                task_idx,ending_idx,whole_size,context_size, hs_data[task_idx].ending_logprob_count[ending_idx], hs_data[task_idx].ending_logprob[ending_idx] );
        }

        // Find the ending with maximum logprob
        size_t ending_logprob_max_idx = 0;
        double ending_logprob_max_val = hs_data[task_idx].ending_logprob[0];
        for (size_t j = 1; j < 4; j++) {
            if (hs_data[task_idx].ending_logprob[j] > ending_logprob_max_val) {
                ending_logprob_max_idx = j;
                ending_logprob_max_val =  hs_data[task_idx].ending_logprob[j];
            }
        }

//        printf("max logprob ending idx %lu, gold ending idx %lu\n", ending_logprob_max_idx, hs_data[task_idx].gold_ending_idx);

        // If the gold ending got the maximum logprobe add one accuracy point
        if (ending_logprob_max_idx == hs_data[task_idx].gold_ending_idx) {
            acc += 1.0;
        }

        // Print the accumulated accuracy mean x 100
        printf("%zu\t%.8lf\n",task_idx+1, acc/double(task_idx+1)*100.0);
        fflush(stdout);
    }

    delete [] hs_data;

    printf("\n");
}

int main(int argc, char ** argv) {
    gpt_params params;

    params.n_batch = 512;
    if (!gpt_params_parse(argc, argv, params)) {
        return 1;
    }

    params.logits_all = true;
    params.n_batch = std::min(params.n_batch, params.n_ctx);

    if (params.ppl_stride > 0) {
        fprintf(stderr, "Will perform strided perplexity calculation -> adjusting context size from %d to %d\n",
                params.n_ctx, params.n_ctx + params.ppl_stride/2);
        params.n_ctx += params.ppl_stride/2;
    }

    print_build_info();

    if (params.seed == LLAMA_DEFAULT_SEED) {
        params.seed = time(NULL);
    }

    fprintf(stderr, "%s: seed  = %u\n", __func__, params.seed);

    std::mt19937 rng(params.seed);
    if (params.random_prompt) {
        params.prompt = gpt_random_prompt(rng);
    }

    llama_backend_init(params.numa);

    llama_model * model;
    llama_context * ctx;

    // load the model and apply lora adapter, if any
    std::tie(model, ctx) = llama_init_from_gpt_params(params);
    if (model == NULL) {
        fprintf(stderr, "%s: error: unable to load model\n", __func__);
        return 1;
    }

    const int n_ctx_train = llama_n_ctx_train(model);
    if (params.n_ctx > n_ctx_train) {
        fprintf(stderr, "%s: warning: model was trained on only %d context tokens (%d specified)\n",
                __func__, n_ctx_train, params.n_ctx);
    }

    // print system information
    {
        fprintf(stderr, "\n");
        fprintf(stderr, "%s\n", get_system_info(params).c_str());
    }

    struct results_perplexity results;
    if (params.hellaswag) {
        hellaswag_score(ctx, params);
    } else {
        results = perplexity(ctx, params);
    }

    llama_print_timings(ctx);
    write_logfile(ctx, params, model, results);

    llama_free(ctx);
    llama_free_model(model);

    llama_backend_free();

    return 0;
}