|
import pandas as pd |
|
|
|
import streamlit as st |
|
from streamlit.components.v1 import iframe |
|
import altair as alt |
|
|
|
from pygwalker.api.streamlit import StreamlitRenderer, init_streamlit_comm |
|
|
|
from types import SimpleNamespace |
|
|
|
from df import fetch |
|
|
|
alt.renderers.set_embed_options(theme="dark") |
|
|
|
|
|
@st.cache_data(ttl="30m") |
|
def fetch_asset(asset): |
|
return fetch(asset) |
|
|
|
def gen_charts(asset, chart_size={"width": 560, "height": 300}): |
|
|
|
data = fetch_asset(asset) |
|
etf_volumes = data.etf_volumes |
|
price = data.price |
|
etf_flow_individual = data.etf_flow_individual |
|
etf_flow_total = data.etf_flow_total |
|
cum_flow_individual = data.cum_flow_individual |
|
cum_flow_total = data.cum_flow_total |
|
|
|
trading_vol_fig = ( |
|
alt.Chart(etf_volumes) |
|
.transform_fold( |
|
etf_volumes.drop(columns="Date").columns.to_list(), as_=["Funds", "Volume"] |
|
) |
|
.mark_line() |
|
.encode( |
|
x=alt.X("Date:T", axis=alt.Axis(tickCount="day")), |
|
y=alt.Y("Volume:Q"), |
|
color="Funds:N", |
|
) |
|
).properties( |
|
width=chart_size["width"], |
|
height=chart_size["height"] / 2, |
|
) |
|
trading_vol_total_fig = ( |
|
alt.Chart(etf_volumes) |
|
.transform_fold( |
|
etf_volumes.drop(columns="Date").columns.to_list(), as_=["Funds", "Volume"] |
|
) |
|
.mark_rule() |
|
.encode( |
|
x=alt.X("Date:T", axis=alt.Axis(tickCount="day", title="", labels=False)), |
|
y=alt.Y("sum(Volume):Q", title="Total Volume"), |
|
color=alt.value("teal"), |
|
) |
|
).properties( |
|
width=chart_size["width"], |
|
height=chart_size["height"] / 2, |
|
) |
|
|
|
trading_vol_fig = trading_vol_total_fig & trading_vol_fig |
|
trading_vol_fig = trading_vol_fig.properties( |
|
title=f"{asset} ETF trading volume", |
|
) |
|
|
|
|
|
net_flow_individual_fig = ( |
|
alt.Chart(etf_flow_individual) |
|
.transform_fold( |
|
etf_flow_individual.drop(columns="Date").columns.to_list(), |
|
as_=["Funds", "Net Flow"], |
|
) |
|
.mark_line() |
|
.encode( |
|
x=alt.X("Date:T", axis=alt.Axis(tickCount="day")), |
|
y=alt.Y("Net Flow:Q"), |
|
color="Funds:N", |
|
) |
|
).properties( |
|
width=chart_size["width"], |
|
height=chart_size["height"] / 2, |
|
) |
|
net_flow_total_fig = ( |
|
alt.Chart(etf_flow_total) |
|
.mark_rule() |
|
.encode( |
|
x=alt.X("Date:T", axis=alt.Axis(tickCount="day", title="", labels=False)), |
|
y=alt.Y("Total:Q"), |
|
color=alt.condition( |
|
alt.datum.Total > 0, |
|
alt.value("seagreen"), |
|
alt.value("orangered"), |
|
), |
|
) |
|
).properties( |
|
width=chart_size["width"], |
|
height=chart_size["height"] / 2, |
|
) |
|
net_flow_individual_fig = net_flow_total_fig & net_flow_individual_fig |
|
net_flow_individual_fig = net_flow_individual_fig.resolve_scale( |
|
x="shared" |
|
).properties( |
|
title=f"{asset} ETF net flow of individual funds", |
|
) |
|
|
|
net_flow_total_fig = ( |
|
alt.Chart(etf_flow_total) |
|
.mark_rule() |
|
.encode( |
|
x=alt.X("Date:T", axis=alt.Axis(tickCount="day", title="", labels=False)), |
|
y=alt.Y("Total:Q"), |
|
color=alt.condition( |
|
alt.datum.Total > 0, |
|
alt.value("seagreen"), |
|
alt.value("orangered"), |
|
), |
|
) |
|
).properties( |
|
width=chart_size["width"], |
|
height=chart_size["height"] / 2, |
|
) |
|
|
|
price_fig = ( |
|
alt.Chart(price) |
|
.mark_line() |
|
.encode( |
|
x=alt.X("Date:T", axis=alt.Axis(tickCount="day")), |
|
y=alt.Y("Price:Q").scale(zero=False), |
|
color=alt.value("crimson"), |
|
) |
|
).properties( |
|
width=chart_size["width"], |
|
height=chart_size["height"] / 2, |
|
) |
|
|
|
net_flow_total_fig = net_flow_total_fig & price_fig |
|
net_flow_total_fig = net_flow_total_fig.resolve_scale(x="shared").properties( |
|
title=f"{asset} ETF net flow total vs asset price", |
|
) |
|
|
|
|
|
cum_flow_individual_net_fig = ( |
|
alt.Chart(cum_flow_individual) |
|
.transform_fold( |
|
cum_flow_individual.drop(columns="Date").columns.to_list(), |
|
as_=["Funds", "Net Flow"], |
|
) |
|
.mark_area() |
|
.encode( |
|
x=alt.X("Date:T", axis=alt.Axis(tickCount="day", title="", labels=False)), |
|
y=alt.Y("Net Flow:Q"), |
|
color=alt.Color("Funds:N", scale=alt.Scale(scheme="tableau20")), |
|
) |
|
).properties( |
|
width=chart_size["width"], |
|
height=chart_size["height"] / 2, |
|
) |
|
cum_flow_individual_net_fig = cum_flow_individual_net_fig & price_fig |
|
cum_flow_individual_net_fig = cum_flow_individual_net_fig.resolve_scale( |
|
x="shared" |
|
).properties( |
|
title=f"{asset} ETF cumulative flow of individual funds vs asset price", |
|
) |
|
|
|
|
|
cum_flow_total_fig = ( |
|
alt.Chart(cum_flow_total) |
|
.transform_calculate( |
|
negative="datum.Total < 0", |
|
) |
|
.mark_area() |
|
.encode( |
|
x=alt.X("Date:T", axis=alt.Axis(tickCount="day", title="", labels=False)), |
|
y=alt.Y("Total:Q", impute={"value": 0}), |
|
color=alt.Color( |
|
"negative:N", title="Negative Flow", scale=alt.Scale(scheme="set2") |
|
), |
|
) |
|
).properties( |
|
width=chart_size["width"], |
|
height=chart_size["height"] / 2, |
|
) |
|
cum_flow_total_fig = cum_flow_total_fig & price_fig |
|
cum_flow_total_fig = cum_flow_total_fig.resolve_scale(x="shared").properties( |
|
title=f"{asset} ETF cumulative flow total vs asset price", |
|
) |
|
|
|
return SimpleNamespace( |
|
trading_vol_fig=trading_vol_fig, |
|
net_flow_individual_fig=net_flow_individual_fig, |
|
net_flow_total_fig=net_flow_total_fig, |
|
cum_flow_individual_net_fig=cum_flow_individual_net_fig, |
|
cum_flow_total_fig=cum_flow_total_fig, |
|
) |
|
|
|
|
|
def asset_charts(asset: str, chart_size={"width": "container", "height": 300}): |
|
charts = gen_charts(asset, chart_size) |
|
|
|
all_charts = ( |
|
charts.trading_vol_fig |
|
& charts.net_flow_individual_fig |
|
& charts.net_flow_total_fig |
|
& charts.cum_flow_individual_net_fig |
|
& charts.cum_flow_total_fig |
|
).resolve_scale(color="independent") |
|
|
|
return all_charts |
|
|
|
|
|
def compound_chart(chart_size={"width": 560, "height": 300}): |
|
all_charts_btc = asset_charts("BTC", chart_size) |
|
all_charts_eth = asset_charts("ETH", chart_size) |
|
|
|
all_charts = (all_charts_btc | all_charts_eth).resolve_scale(color="independent") |
|
|
|
return all_charts |
|
|
|
if __name__ == "__main__": |
|
|
|
st.set_page_config(layout="wide", page_icon="π") |
|
|
|
init_streamlit_comm() |
|
|
|
dashboard_tab, single_view, flow_tab, volume_tab, price_tab = st.tabs( |
|
[ |
|
"Dashboard", |
|
"View Single ETF", |
|
"Explore ETF Flow", |
|
"Explore ETF Volume", |
|
"Explore ETF Asset Price", |
|
] |
|
) |
|
|
|
btc = fetch_asset("BTC") |
|
eth = fetch_asset("ETH") |
|
|
|
with dashboard_tab: |
|
chart = compound_chart(chart_size={"width": 560, "height": 300}) |
|
|
|
st.altair_chart(chart, use_container_width=True) |
|
btc_col, eth_col = st.columns(2) |
|
with btc_col: |
|
iframe(btc.url, height=1200, scrolling=True) |
|
with eth_col: |
|
iframe(eth.url, height=1200, scrolling=True) |
|
with single_view: |
|
asset = st.selectbox( |
|
"Asset to view", |
|
("BTC", "ETH"), |
|
) |
|
charts = gen_charts(asset, chart_size={"width": "container", "height": 600}) |
|
st.altair_chart(charts.trading_vol_fig, use_container_width=True) |
|
st.altair_chart(charts.net_flow_individual_fig, use_container_width=True) |
|
st.altair_chart(charts.net_flow_total_fig, use_container_width=True) |
|
st.altair_chart(charts.cum_flow_individual_net_fig, use_container_width=True) |
|
st.altair_chart(charts.cum_flow_total_fig, use_container_width=True) |
|
iframe(fetch_asset(asset).url, height=1200, scrolling=True) |
|
with flow_tab: |
|
btc_flow, eth_flow = btc.etf_flow, eth.etf_flow |
|
btc_flow["Asset"] = "BTC" |
|
eth_flow["Asset"] = "ETH" |
|
df = pd.concat([btc_flow, eth_flow]) |
|
df.Date = df.Date.astype(str) |
|
StreamlitRenderer(df).explorer() |
|
with volume_tab: |
|
btc_volume, eth_volume = btc.etf_volumes, eth.etf_volumes |
|
btc_volume["Asset"] = "BTC" |
|
eth_volume["Asset"] = "ETH" |
|
df = pd.concat([btc_volume, eth_volume]) |
|
df.Date = df.Date.astype(str) |
|
StreamlitRenderer(df).explorer() |
|
with price_tab: |
|
btc_price, eth_price = btc.price, eth.price |
|
btc_price["Asset"] = "BTC" |
|
eth_price["Asset"] = "ETH" |
|
df = pd.concat([btc_price, eth_price]) |
|
df.Date = df.Date.astype(str) |
|
StreamlitRenderer(df).explorer() |
|
|