Update app.py
Browse files
app.py
CHANGED
@@ -5,32 +5,42 @@ import shutil
|
|
5 |
|
6 |
# Description and Introduction texts
|
7 |
DESCRIPTION = """
|
8 |
-
|
9 |
"""
|
10 |
|
11 |
INTRODUCTION = """
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
18 |
"""
|
19 |
|
20 |
HOW_WE_TESTED = """
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
|
|
|
|
|
|
|
|
28 |
"""
|
29 |
|
30 |
-
# Replace 'path/to/your/csv/folder' with the actual path to your folder containing CSV files
|
31 |
csv_folder_path = 'result_csv/'
|
32 |
|
33 |
-
# Function to read all CSV files from a folder and rearrange columns
|
34 |
def read_and_process_csv_files(folder_path):
|
35 |
all_data = []
|
36 |
for filename in os.listdir(folder_path):
|
@@ -41,18 +51,15 @@ def read_and_process_csv_files(folder_path):
|
|
41 |
|
42 |
combined_df = pd.concat(all_data, ignore_index=True)
|
43 |
|
44 |
-
# Rearrange columns
|
45 |
columns_order = [
|
46 |
"Model_Name", "Library", "TTFT", "Tokens-per-Second", "Token_Count",
|
47 |
-
"
|
48 |
]
|
49 |
|
50 |
-
# Ensure all required columns exist, if not, create them with NaN values
|
51 |
for col in columns_order:
|
52 |
if col not in combined_df.columns:
|
53 |
combined_df[col] = pd.NA
|
54 |
|
55 |
-
# Select and order the columns
|
56 |
return combined_df[columns_order]
|
57 |
|
58 |
df = read_and_process_csv_files(csv_folder_path)
|
@@ -65,60 +72,120 @@ def add_new_entry(file):
|
|
65 |
if file is None:
|
66 |
return df, "No file uploaded."
|
67 |
|
68 |
-
# Read the uploaded CSV file
|
69 |
new_df = pd.read_csv(file.name)
|
70 |
|
71 |
-
# Rearrange columns to match the existing DataFrame
|
72 |
columns_order = [
|
73 |
"Model_Name", "Library", "TTFT", "Tokens-per-Second", "Token_Count",
|
74 |
-
"
|
75 |
]
|
76 |
for col in columns_order:
|
77 |
if col not in new_df.columns:
|
78 |
new_df[col] = pd.NA
|
79 |
new_df = new_df[columns_order]
|
80 |
|
81 |
-
# Append the new data to the existing DataFrame
|
82 |
df = pd.concat([df, new_df], ignore_index=True)
|
83 |
|
84 |
-
# Save the uploaded file to the CSV folder
|
85 |
filename = os.path.basename(file.name)
|
86 |
destination = os.path.join(csv_folder_path, filename)
|
87 |
shutil.copy(file.name, destination)
|
88 |
|
89 |
return df, f"File '{filename}' uploaded and data added successfully!"
|
90 |
|
91 |
-
|
92 |
-
|
|
|
|
|
|
|
93 |
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
100 |
|
101 |
-
# Tabs for Leaderboard and Add New Entry
|
102 |
with gr.Tabs():
|
103 |
-
with gr.TabItem("Leaderboard"):
|
|
|
|
|
|
|
|
|
104 |
leaderboard = gr.DataFrame(df)
|
|
|
|
|
105 |
|
106 |
-
with gr.TabItem("Add New Entry"):
|
107 |
-
file_upload = gr.File(label="Upload CSV File")
|
108 |
-
submit_button = gr.Button("Add Entry")
|
109 |
result = gr.Markdown()
|
110 |
|
111 |
-
# How we tested section at the bottom
|
112 |
-
with gr.Column():
|
113 |
-
gr.Markdown("---")
|
114 |
-
gr.Markdown(HOW_WE_TESTED)
|
115 |
-
|
116 |
submit_button.click(
|
117 |
add_new_entry,
|
118 |
inputs=[file_upload],
|
119 |
outputs=[leaderboard, result]
|
120 |
)
|
121 |
|
|
|
|
|
|
|
122 |
demo.load(get_leaderboard_df, outputs=[leaderboard])
|
123 |
|
124 |
-
|
|
|
|
5 |
|
6 |
# Description and Introduction texts
|
7 |
DESCRIPTION = """
|
8 |
+
<h2 style='text-align: center; color: #cbff4d !important; text-shadow: 2px 2px 4px rgba(0,0,0,0.1);'>๐ LLM Inference Leaderboard: Pushing the Boundaries of Performance ๐</h2>
|
9 |
"""
|
10 |
|
11 |
INTRODUCTION = """
|
12 |
+
<div style='background-color: #e6ffd9; padding: 20px; border-radius: 15px; margin-bottom: 20px; box-shadow: 0 4px 6px rgba(0,0,0,0.1);'>
|
13 |
+
<h3 style='color: #00480a;'>๐ฌ Our Exciting Quest</h3>
|
14 |
+
<p style='color: #00480a;'>We're on a thrilling journey to help developers discover the perfect LLMs and libraries for their innovative projects! We've put these models through their paces using six cutting-edge inference engines:</p>
|
15 |
+
<ul style='color: #00480a;'>
|
16 |
+
<li>๐ vLLM</li>
|
17 |
+
<li>๐ TGI</li>
|
18 |
+
<li>โก TensorRT-LLM</li>
|
19 |
+
<li>๐ฎ Tritonvllm</li>
|
20 |
+
<li>๐ Deepspeed-mii</li>
|
21 |
+
<li>๐ฏ ctranslate</li>
|
22 |
+
</ul>
|
23 |
+
<p style='color: #00480a;'>All our tests were conducted on state-of-the-art A100 GPUs hosted on Azure, ensuring a fair and neutral battleground!</p>
|
24 |
+
<p style='color: #00480a; font-weight: bold;'>Our mission: Empower developers, researchers, and AI enthusiasts to find their perfect LLM match for both development and production environments!</p>
|
25 |
+
</div>
|
26 |
"""
|
27 |
|
28 |
HOW_WE_TESTED = """
|
29 |
+
<div style='background-color: #cbff4d; padding: 20px; border-radius: 15px; margin-top: 20px; box-shadow: 0 4px 6px rgba(0,0,0,0.1);'>
|
30 |
+
<h3 style='color: #00480a;'>๐งช Our Rigorous Testing Process</h3>
|
31 |
+
<p style='color: #00480a;'>We left no stone unturned in our quest for reliable benchmarks:</p>
|
32 |
+
<ul style='color: #00480a;'>
|
33 |
+
<li><strong>๐ฅ๏ธ Platform:</strong> A100 GPUs from Azure - the ultimate testing ground!</li>
|
34 |
+
<li><strong>๐ณ Setup:</strong> Docker containers for each library, ensuring a pristine environment.</li>
|
35 |
+
<li><strong>โ๏ธ Configuration:</strong> Standardized settings (temperature 0.5, top_p 1) for laser-focused performance comparisons.</li>
|
36 |
+
<li><strong>๐ Prompts & Token Ranges:</strong> Six diverse prompts, input lengths from 20 to 2,000 tokens, and generation lengths of 100, 200, and 500 tokens - pushing the boundaries of flexibility!</li>
|
37 |
+
<li><strong>๐ค Models & Libraries Tested:</strong> We put the best through their paces: Phi-3-medium-128k-instruct, Meta-Llama-3.1-8B-Instruct, Mistral-7B-Instruct-v0.3, Qwen2-7B-Instruct, and Gemma-2-9b-it, using TGI, vLLM, DeepSpeed Mii, CTranslate2, Triton with vLLM Backend, and TensorRT-LLM.</li>
|
38 |
+
</ul>
|
39 |
+
</div>
|
40 |
"""
|
41 |
|
|
|
42 |
csv_folder_path = 'result_csv/'
|
43 |
|
|
|
44 |
def read_and_process_csv_files(folder_path):
|
45 |
all_data = []
|
46 |
for filename in os.listdir(folder_path):
|
|
|
51 |
|
52 |
combined_df = pd.concat(all_data, ignore_index=True)
|
53 |
|
|
|
54 |
columns_order = [
|
55 |
"Model_Name", "Library", "TTFT", "Tokens-per-Second", "Token_Count",
|
56 |
+
"input_length", "output_length", "Input", "Output"
|
57 |
]
|
58 |
|
|
|
59 |
for col in columns_order:
|
60 |
if col not in combined_df.columns:
|
61 |
combined_df[col] = pd.NA
|
62 |
|
|
|
63 |
return combined_df[columns_order]
|
64 |
|
65 |
df = read_and_process_csv_files(csv_folder_path)
|
|
|
72 |
if file is None:
|
73 |
return df, "No file uploaded."
|
74 |
|
|
|
75 |
new_df = pd.read_csv(file.name)
|
76 |
|
|
|
77 |
columns_order = [
|
78 |
"Model_Name", "Library", "TTFT", "Tokens-per-Second", "Token_Count",
|
79 |
+
"input_length", "output_length", "Input", "Output"
|
80 |
]
|
81 |
for col in columns_order:
|
82 |
if col not in new_df.columns:
|
83 |
new_df[col] = pd.NA
|
84 |
new_df = new_df[columns_order]
|
85 |
|
|
|
86 |
df = pd.concat([df, new_df], ignore_index=True)
|
87 |
|
|
|
88 |
filename = os.path.basename(file.name)
|
89 |
destination = os.path.join(csv_folder_path, filename)
|
90 |
shutil.copy(file.name, destination)
|
91 |
|
92 |
return df, f"File '{filename}' uploaded and data added successfully!"
|
93 |
|
94 |
+
def filter_and_search(search_term, library_filter):
|
95 |
+
filtered_df = df.copy()
|
96 |
+
|
97 |
+
if search_term:
|
98 |
+
filtered_df = filtered_df[filtered_df['Model_Name'].str.contains(search_term, case=False, na=False)]
|
99 |
|
100 |
+
if library_filter != "All":
|
101 |
+
filtered_df = filtered_df[filtered_df['Library'] == library_filter]
|
102 |
+
|
103 |
+
return filtered_df
|
104 |
+
|
105 |
+
custom_css = """
|
106 |
+
body {
|
107 |
+
background-color: #f0fff0;
|
108 |
+
font-family: 'Roboto', sans-serif;
|
109 |
+
}
|
110 |
+
.gradio-container {
|
111 |
+
max-width: 1200px !important;
|
112 |
+
}
|
113 |
+
.gradio-container .prose * {
|
114 |
+
color: #00480a !important;
|
115 |
+
}
|
116 |
+
.gradio-container .prose h2,
|
117 |
+
.gradio-container .prose h3 {
|
118 |
+
color: #00480a !important;
|
119 |
+
}
|
120 |
+
.tabs {
|
121 |
+
background-color: #e6ffd9;
|
122 |
+
border-radius: 15px;
|
123 |
+
overflow: hidden;
|
124 |
+
box-shadow: 0 4px 6px rgba(0,0,0,0.1);
|
125 |
+
}
|
126 |
+
.tab-nav {
|
127 |
+
background-color: #00480a;
|
128 |
+
padding: 10px;
|
129 |
+
}
|
130 |
+
.tab-nav button {
|
131 |
+
color: #cbff4d !important;
|
132 |
+
background-color: #006400;
|
133 |
+
border: none;
|
134 |
+
padding: 10px 20px;
|
135 |
+
margin-right: 5px;
|
136 |
+
border-radius: 10px;
|
137 |
+
cursor: pointer;
|
138 |
+
transition: all 0.3s ease;
|
139 |
+
}
|
140 |
+
.tab-nav button:hover {
|
141 |
+
background-color: #cbff4d;
|
142 |
+
color: #00480a !important;
|
143 |
+
}
|
144 |
+
.tab-nav button.selected {
|
145 |
+
background-color: #cbff4d;
|
146 |
+
color: #00480a !important;
|
147 |
+
font-weight: bold;
|
148 |
+
}
|
149 |
+
.gr-button-primary {
|
150 |
+
background-color: #00480a !important;
|
151 |
+
border-color: #00480a !important;
|
152 |
+
color: #cbff4d !important;
|
153 |
+
}
|
154 |
+
.gr-button-primary:hover {
|
155 |
+
background-color: #cbff4d !important;
|
156 |
+
color: #00480a !important;
|
157 |
+
}
|
158 |
+
"""
|
159 |
+
|
160 |
+
with gr.Blocks(css=custom_css) as demo:
|
161 |
+
gr.HTML(DESCRIPTION)
|
162 |
+
gr.HTML(INTRODUCTION)
|
163 |
|
|
|
164 |
with gr.Tabs():
|
165 |
+
with gr.TabItem("๐ Leaderboard"):
|
166 |
+
with gr.Row():
|
167 |
+
search_input = gr.Textbox(label="๐ Search Model Name", placeholder="Enter model name...")
|
168 |
+
library_dropdown = gr.Dropdown(choices=["All"] + df['Library'].unique().tolist(), label="๐ท๏ธ Filter by Library", value="All")
|
169 |
+
|
170 |
leaderboard = gr.DataFrame(df)
|
171 |
+
|
172 |
+
gr.HTML(HOW_WE_TESTED)
|
173 |
|
174 |
+
with gr.TabItem("โ Add New Entry"):
|
175 |
+
file_upload = gr.File(label="๐ Upload CSV File")
|
176 |
+
submit_button = gr.Button("๐ค Add Entry", variant="primary")
|
177 |
result = gr.Markdown()
|
178 |
|
|
|
|
|
|
|
|
|
|
|
179 |
submit_button.click(
|
180 |
add_new_entry,
|
181 |
inputs=[file_upload],
|
182 |
outputs=[leaderboard, result]
|
183 |
)
|
184 |
|
185 |
+
search_input.change(filter_and_search, inputs=[search_input, library_dropdown], outputs=leaderboard)
|
186 |
+
library_dropdown.change(filter_and_search, inputs=[search_input, library_dropdown], outputs=leaderboard)
|
187 |
+
|
188 |
demo.load(get_leaderboard_df, outputs=[leaderboard])
|
189 |
|
190 |
+
if __name__ == "__main__":
|
191 |
+
demo.launch()
|