n1ck-guo's picture
print data info
2bd435a
raw
history blame
12.2 kB
import glob
import json
import math
import os
import traceback
from dataclasses import dataclass
import dateutil
import numpy as np
from huggingface_hub import ModelCard
from src.display.formatting import make_clickable_model
from src.display.utils import AutoEvalColumn, ModelType, Tasks, Precision, WeightType, QuantType, WeightDtype, ComputeDtype
@dataclass
class EvalResult:
# Also see src.display.utils.AutoEvalColumn for what will be displayed.
eval_name: str # org_model_precision (uid)
full_model: str # org/model (path on hub)
org: str
model: str
revision: str # commit hash, "" if main
results: dict
quant_type: QuantType = QuantType.Unknown
precision: Precision = Precision.Unknown
weight_dtype: WeightDtype = WeightDtype.Unknown
compute_dtype: ComputeDtype = ComputeDtype.Unknown
double_quant: bool = False
model_type: ModelType = ModelType.Unknown # Pretrained, fine tuned, ...
weight_type: WeightType = WeightType.Original # Original or Adapter
architecture: str = "Unknown" # From config file
license: str = "?"
likes: int = 0
num_params: int = 0
model_size: int = 0
group_size: int = -1
date: str = "" # submission date of request file
still_on_hub: bool = True
is_merge: bool = False
flagged: bool = False
status: str = "Finished"
tags: list = None
result_file: str = ""
@classmethod
def init_from_json_file(self, json_filepath):
"""Inits the result from the specific model result file"""
result_file = "/".join(json_filepath.split("/")[2:])
with open(json_filepath) as fp:
data = json.load(fp)
# We manage the legacy config format
config = data.get("config_general")
# Precision
precision = Precision.from_str(config.get("precision", "4bit"))
quant_type = QuantType.from_str(str(config.get("quant_type", "GPTQ")))
weight_dtype = WeightDtype.from_str(data["task_info"].get("weight_dtype", "int4"))
compute_dtype = ComputeDtype.from_str(data["task_info"].get("compute_dtype", "bfloat16"))
# double_quant = data["quantization_config"].get("bnb_4bit_use_double_quant", False)
model_params = round(float(config["model_params"]), 2)
model_size = round(float(config["model_size"]), 2)
# group_size = data["quantization_config"].get("group_size", -1)
if data.get("quantization_config", None):
double_quant = data["quantization_config"].get("bnb_4bit_use_double_quant", False)
group_size = data["quantization_config"].get("group_size", -1)
else:
double_quant = False
group_size = -1
local = config.get("local", False)
if not local:
local = data["task_info"].get("local", False)
# Get model and org
org_and_model = config.get("model_name")
org_and_model = org_and_model.split("/", 1)
if local and org_and_model[0] != "Intel":
org_and_model = config.get("model_name").split("/")
# temporary "local"
org_and_model = ["local", org_and_model[-1]]
quant_type = QuantType.autoround
if len(org_and_model) == 1:
org = None
model = org_and_model[0]
result_key = f"{model}_{precision.value.name}"
else:
org = org_and_model[0]
model = org_and_model[1]
result_key = f"{org}_{model}_{precision.value.name}"
full_model = "/".join(org_and_model)
# Extract results available in this file (some results are split in several files)
results = {}
for task in Tasks:
task = task.value
if task.benchmark == "mmlu":
accs = np.array([data["results"]["harness|mmlu|0"][task.metric]])
else:
accs = np.array([v.get(task.metric, None) for k, v in data["results"].items() if task.benchmark in k])
if accs.size == 0 or any([acc is None for acc in accs]):
continue
mean_acc = np.mean(accs) * 100.0
mean_acc = round(mean_acc, 2)
results[task.benchmark] = mean_acc
return self(
eval_name=result_key,
full_model=full_model,
org=org,
model=model,
results=results,
precision=precision,
quant_type=quant_type,
weight_dtype=weight_dtype,
compute_dtype=compute_dtype,
double_quant=double_quant,
revision=config.get("model_sha", "main"),
num_params=model_params,
model_size=model_size,
group_size=group_size,
result_file=result_file
)
def update_with_request_file(self, requests_path):
"""Finds the relevant request file for the current model and updates info with it"""
request_file = get_request_file_for_model(requests_path, self.full_model,
self.quant_type.value.name, self.precision.value.name,
self.weight_dtype.value.name, self.compute_dtype.value.name)
try:
with open(request_file, "r") as f:
request = json.load(f)
# self.model_type = ModelType.from_str(request.get("model_type", "Unknown"))
# self.precision = WeightType[request.get("weight_type", "Original")]
# self.num_params = request.get("model_size", 0) / 2 # need fix
self.date = request.get("submitted_time", "")
self.architecture = request.get("architectures", "Unknown")
self.status = request.get("status", "Failed")
except Exception as e:
print(requests_path, self.full_model,
self.quant_type.value.name, self.precision.value.name,
self.weight_dtype.value.name, self.compute_dtype.value.name)
self.status = "Failed"
print(f"Could not find request file for {self.org}/{self.model}")
print(traceback.format_exc())
def update_with_dynamic_file_dict(self, file_dict):
self.license = file_dict.get("license", "?")
self.likes = file_dict.get("likes", 0)
self.still_on_hub = file_dict["still_on_hub"]
self.tags = file_dict.get("tags", [])
self.flagged = any("flagged" in tag for tag in self.tags)
def to_dict(self):
"""Converts the Eval Result to a dict compatible with our dataframe display"""
average = sum([v for v in self.results.values() if v is not None]) / len(Tasks)
data_dict = {
"eval_name": self.eval_name, # not a column, just a save name,
AutoEvalColumn.precision.name: self.precision.value.name,
AutoEvalColumn.quant_type.name: self.quant_type.value.name,
AutoEvalColumn.model_type_symbol.name: self.quant_type.value.symbol,
AutoEvalColumn.weight_dtype.name: self.weight_dtype.value.name,
AutoEvalColumn.compute_dtype.name: self.compute_dtype.value.name,
AutoEvalColumn.double_quant.name: self.double_quant,
AutoEvalColumn.model_type.name: self.model_type.value.name,
AutoEvalColumn.weight_type.name: self.weight_type.value.name,
AutoEvalColumn.architecture.name: self.architecture,
AutoEvalColumn.model.name: make_clickable_model(self.full_model, self.result_file),
AutoEvalColumn.dummy.name: self.full_model,
AutoEvalColumn.revision.name: self.revision,
AutoEvalColumn.average.name: average,
AutoEvalColumn.license.name: self.license,
AutoEvalColumn.likes.name: self.likes,
AutoEvalColumn.params.name: self.num_params,
AutoEvalColumn.model_size.name: self.model_size,
AutoEvalColumn.group_size.name: self.group_size,
AutoEvalColumn.still_on_hub.name: self.still_on_hub,
AutoEvalColumn.merged.name: "merge" in self.tags if self.tags else False,
AutoEvalColumn.moe.name: ("moe" in self.tags if self.tags else False) or "moe" in self.full_model.lower(),
AutoEvalColumn.flagged.name: self.flagged
}
for task in Tasks:
data_dict[task.value.col_name] = self.results[task.value.benchmark]
return data_dict
def get_request_file_for_model(requests_path, model_name,
quant_type, precision, weight_dtype, compute_dtype):
"""Selects the correct request file for a given model. Only keeps runs tagged as FINISHED"""
# {model_path}_eval_request_{private}_{quant_type}_{precision}_{weight_dtype}_{compute_dtype}.json
request_files = os.path.join(
requests_path,
f"{model_name}_eval_request_*.json",
)
request_files = glob.glob(request_files)
# Select correct request file (precision)
request_file = ""
request_files = sorted(request_files, reverse=True)
for tmp_request_file in request_files:
with open(tmp_request_file, "r") as f:
req_content = json.load(f)
print(model_name, req_content["precision"], precision.split(".")[-1], str(req_content["quant_type"]), quant_type, req_content["weight_dtype"], weight_dtype.split(".")[-1],req_content["compute_dtype"], compute_dtype.split(".")[-1] )
if (
req_content["status"] in ["Finished"]
and req_content["precision"] == precision.split(".")[-1]
and str(req_content["quant_type"]) == quant_type
and req_content["weight_dtype"] == weight_dtype.split(".")[-1]
and req_content["compute_dtype"] == compute_dtype.split(".")[-1]
):
request_file = tmp_request_file
elif (
req_content["status"] in ["Finished"]
and req_content["precision"] == precision.split(".")[-1]
and quant_type == "AutoRound"
and req_content["weight_dtype"] == weight_dtype.split(".")[-1]
and req_content["compute_dtype"] == compute_dtype.split(".")[-1]
):
request_file = tmp_request_file
return request_file
def get_raw_eval_results(results_path: str, requests_path: str, dynamic_path: str) -> list[EvalResult]:
"""From the path of the results folder root, extract all needed info for results"""
model_result_filepaths = []
for root, _, files in os.walk(results_path):
# We should only have json files in model results
if len(files) == 0 or any([not f.endswith(".json") for f in files]):
continue
# Sort the files by date
try:
files.sort(key=lambda x: x.removesuffix(".json").removeprefix("results_")[:-7])
except dateutil.parser._parser.ParserError:
files = [files[-1]]
for file in files:
model_result_filepaths.append(os.path.join(root, file))
with open(dynamic_path) as f:
dynamic_data = json.load(f)
eval_results = {}
for model_result_filepath in model_result_filepaths:
# Creation of result
eval_result = EvalResult.init_from_json_file(model_result_filepath)
eval_result.update_with_request_file(requests_path)
if eval_result.full_model in dynamic_data:
# eval_result.update_with_dynamic_file_dict(dynamic_data[eval_result.full_model])
# Hardcoding because of gating problem
if "meta-llama" in eval_result.full_model:
eval_result.still_on_hub = True
# Store results of same eval together
eval_name = eval_result.eval_name
if eval_name in eval_results.keys():
eval_results[eval_name].results.update({k: v for k, v in eval_result.results.items() if v is not None})
else:
eval_results[eval_name] = eval_result
results = []
for v in eval_results.values():
try:
if v.status == "Finished":
v.to_dict() # we test if the dict version is complete
results.append(v)
except KeyError: # not all eval values present
continue
return results