|
|
|
|
|
|
|
|
|
|
|
|
|
import pandas as pd |
|
import os |
|
import torch |
|
from transformers import T5Tokenizer, T5ForConditionalGeneration |
|
from transformers.optimization import Adafactor |
|
import time |
|
import warnings |
|
import random |
|
warnings.filterwarnings('ignore') |
|
|
|
import re |
|
|
|
def strip_html(text): |
|
return re.sub('<[^<]+?>', '', text) |
|
|
|
|
|
|
|
|
|
|
|
train_columns = ['round_amount', 'round_date', 'stage', 'investee', |
|
'investee_description', 'investee_country', 'investee_region', |
|
'investee_subregion', 'investee_vertical', 'investee_industry', |
|
'investor_list', 'previous_investors', 'prior_funding'] |
|
train = pd.read_csv("train.csv") |
|
|
|
|
|
|
|
|
|
|
|
train.publication_timestamp = pd.to_datetime(train.publication_timestamp) |
|
|
|
|
|
|
|
|
|
|
|
input_text = train[train_columns].to_dict(orient='records') |
|
train_df = train[['title']].rename(columns={'title':'target_text'}) |
|
train_df['input_text'] = input_text |
|
train_df['prefix'] = 'tia' |
|
train_df.input_text = train_df.input_text.astype(str) |
|
|
|
|
|
|
|
|
|
|
|
if torch.cuda.is_available(): |
|
dev = torch.device("cuda:0") |
|
print("Running on the GPU") |
|
else: |
|
dev = torch.device("cpu") |
|
print("Running on the CPU") |
|
|
|
|
|
|
|
|
|
|
|
tokenizer = T5Tokenizer.from_pretrained('google/t5-v1_1-base') |
|
model = T5ForConditionalGeneration.from_pretrained('t5-v1_1-base_tia/', local_files_only=True) |
|
|
|
model.to(dev) |
|
|
|
|
|
|
|
|
|
|
|
vi_table = train[['investee_industry', 'investee_vertical']].drop_duplicates() |
|
|
|
|
|
|
|
|
|
|
|
def update_industry(value): |
|
verticals = list(vi_table[vi_table['investee_industry'] == value]['investee_vertical'].values) |
|
return verticals[0] |
|
|
|
def update_vertical(value): |
|
industries = list(vi_table[vi_table['investee_vertical'] == value]['investee_industry'].values) |
|
return industries[0] |
|
|
|
|
|
|
|
|
|
|
|
update_industry('Green') |
|
|
|
|
|
|
|
|
|
|
|
update_vertical('Clean tech') |
|
|
|
|
|
|
|
|
|
|
|
import gradio as gr |
|
|
|
|
|
|
|
|
|
|
|
num_return_sequences = 5 |
|
|
|
|
|
|
|
|
|
|
|
def generate_headline(stage, investee_country, investee_subregion, investee_region, |
|
investee_vertical, investee_industry, |
|
round_amount, investee, investee_description, investor_list, previous_investors, |
|
other_values): |
|
|
|
full_df = other_values.set_index("key").T |
|
|
|
full_df['stage'] = stage |
|
full_df['investee_country'] = investee_country |
|
full_df['investee_subregion'] = investee_subregion |
|
full_df['investee_region'] = investee_region |
|
full_df['investee_vertical'] = investee_vertical |
|
full_df['investee_industry'] = investee_industry |
|
full_df['round_amount'] = str(float(round_amount)) |
|
full_df['investee'] = investee |
|
full_df['investee_description'] = investee_description |
|
full_df['investor_list'] = investor_list |
|
full_df['previous_investors'] = previous_investors |
|
|
|
random_set =full_df[['round_amount', 'round_date', 'stage', 'investee', |
|
'investee_description', 'investee_country', 'investee_region', |
|
'investee_subregion', 'investee_vertical', 'investee_industry', |
|
'investor_list', 'previous_investors', 'prior_funding']].to_json(orient="records") |
|
|
|
|
|
input_ids = tokenizer.encode(f"tia: {{{random_set}}}", return_tensors="pt") |
|
input_ids=input_ids.to(dev) |
|
outputs = model.generate(input_ids) |
|
|
|
text_outputs = model.generate(inputs=input_ids, do_sample=True, |
|
num_beams=2, |
|
num_return_sequences=num_return_sequences, |
|
repetition_penalty=5.0) |
|
outputs = [strip_html(tokenizer.decode(o)) for o in text_outputs] |
|
return "\n".join(outputs) |
|
|
|
|
|
|
|
|
|
|
|
other_columns = ['round_date', 'prior_funding'] |
|
|
|
|
|
|
|
|
|
|
|
train.sample(1)[other_columns].T.reset_index().values |
|
|
|
|
|
|
|
|
|
|
|
print(train.query("investee == 'NOSH'")['title'].head(1).T) |
|
train.query("investee == 'NOSH'")[train_columns].head(1).T |
|
|
|
|
|
|
|
|
|
|
|
fake_data = { |
|
"round_amount":1000000.0, |
|
"round_date":"2018-09-26", |
|
"stage":"Pre-series A", |
|
"investee":"NOSH", |
|
"investee_description":"NOSH makes and delivers ready-to-eat meals in Hong Kong.", |
|
"investee_country":"Hong Kong", |
|
"investee_region":"Asia", |
|
"investee_subregion":"Eastern Asia", |
|
"investee_vertical":"Food tech", |
|
"investee_industry":"Restaurants & Food", |
|
"investor_list":["Alibaba Entrepreneurs Fund (阿里巴巴创业者基金)"], |
|
"previous_investors":"", |
|
"prior_funding":1000000.0 |
|
} |
|
|
|
|
|
|
|
|
|
|
|
pd.DataFrame([fake_data]).T |
|
|
|
|
|
|
|
|
|
|
|
demo = gr.Blocks() |
|
|
|
random_sample = train[train_columns].sample(1) |
|
random_sample = pd.DataFrame([fake_data]) |
|
|
|
stage = gr.Dropdown(label="stage", choices=list(train[train_columns].stage.unique())) |
|
investee_country = gr.Dropdown(label="investee_country", choices=list(train[train_columns].investee_country.unique()), |
|
value=random_sample.investee_country.values[0]) |
|
investee_subregion = gr.Dropdown(label="investee_subregion", choices=list(train[train_columns].investee_subregion.unique()), |
|
value=random_sample.investee_subregion.values[0]) |
|
investee_region = gr.Dropdown(label="investee_region", choices=list(train[train_columns].investee_region.unique()), |
|
value=random_sample.investee_region.values[0]) |
|
investee_vertical = gr.Dropdown(label="investee_vertical", choices=list(train[train_columns].investee_vertical.unique()), |
|
value=random_sample.investee_vertical.values[0]) |
|
investee_industry = gr.Dropdown(label="investee_industry", choices=list(train[train_columns].investee_industry.unique()), |
|
value=random_sample.investee_industry.values[0]) |
|
|
|
if pd.isnull(random_sample.round_amount.values[0]): |
|
rand_amount = 0 |
|
else: |
|
rand_amount = random_sample.round_amount.values[0] |
|
|
|
round_amount = gr.Slider(label="round_amount", minimum=100000, maximum=200000000, |
|
value=rand_amount, |
|
step=100000) |
|
|
|
investee = gr.Textbox(label="investee", value=random_sample.investee.values[0]) |
|
investee_description = gr.Textbox(label="investee_description", |
|
value=random_sample.investee_description.values[0]) |
|
investor_list = gr.Textbox(label="investor_list", |
|
value=random_sample.investor_list.values[0]) |
|
previous_investors = gr.Textbox(label="previous_investors", |
|
value=random_sample.previous_investors.values[0]) |
|
other_values = gr.Dataframe( |
|
headers=['key', 'value'], |
|
value=[['round_date', random_sample.round_date.values[0]], |
|
['prior_funding', random_sample.prior_funding.values[0]]] |
|
) |
|
out = gr.Textbox(max_lines=num_return_sequences) |
|
|
|
with demo: |
|
gr.Markdown("Enter funding data to generate news headline.") |
|
|
|
inputs=[stage, investee_country, investee_subregion, investee_region, |
|
investee_vertical, investee_industry, |
|
round_amount, investee, investee_description, investor_list, previous_investors, |
|
other_values] |
|
|
|
investee_industry.change(fn=update_industry, inputs=investee_industry, outputs=investee_vertical) |
|
investee_vertical.change(fn=update_vertical, inputs=investee_vertical, outputs=investee_industry) |
|
gr.Interface(fn=generate_headline, inputs=inputs, outputs=out, live=True) |
|
description="Enter funding data to generate news headline.", |
|
live=True |
|
|
|
demo.launch() |
|
|