Spaces:
Runtime error
Runtime error
from typing import List | |
import torch | |
from torch import nn, BoolTensor, FloatTensor, LongTensor | |
class GLU(nn.Module): | |
def __init__(self, count_in_out: int, count_middle: int): | |
super().__init__() | |
self.gelu = nn.GELU() | |
self.ln0 = nn.LayerNorm(count_in_out) | |
self.ln1 = nn.LayerNorm(count_middle) | |
self.fc0 = nn.Linear(count_in_out, count_middle, bias=False) | |
self.fc1 = nn.Linear(count_in_out, count_middle, bias=False) | |
self.fc2 = nn.Linear(count_middle, count_in_out, bias=False) | |
def forward(self, z: FloatTensor) -> FloatTensor: | |
z = self.ln0.forward(z) | |
w = self.fc0.forward(z) | |
w = self.gelu.forward(w) | |
v = self.fc1.forward(z) | |
z = self.ln1.forward(w * v) | |
z = self.fc2.forward(z) | |
return z | |
class AttentionBase(nn.Module): | |
def __init__(self, head_count: int, embed_count: int): | |
super().__init__() | |
self.head_count = head_count | |
self.embed_count = embed_count | |
self.k_proj = nn.Linear(embed_count, embed_count, bias=False) | |
self.v_proj = nn.Linear(embed_count, embed_count, bias=False) | |
self.q_proj = nn.Linear(embed_count, embed_count, bias=False) | |
self.out_proj = nn.Linear(embed_count, embed_count, bias=False) | |
def forward( | |
self, | |
keys: FloatTensor, | |
values: FloatTensor, | |
queries: FloatTensor, | |
attention_mask: BoolTensor | |
) -> FloatTensor: | |
keys = keys.reshape(keys.shape[:2] + (self.head_count, -1)) | |
values = values.reshape(values.shape[:2] + (self.head_count, -1)) | |
queries = queries.reshape(queries.shape[:2] + (self.head_count, -1)) | |
queries /= queries.shape[-1] ** 0.5 | |
attention_bias = (1 - attention_mask.to(torch.float32)) * -1e12 | |
attention_weights: FloatTensor = torch.einsum( | |
'bqhc,bkhc->bhqk', | |
queries, | |
keys | |
) | |
attention_weights += attention_bias[:, None, None, :] | |
attention_weights = torch.softmax(attention_weights, -1) | |
attention_output: FloatTensor = torch.einsum( | |
"bhqk,bkhc->bqhc", | |
attention_weights, | |
values | |
) | |
shape = attention_output.shape[:2] + (self.embed_count,) | |
attention_output = attention_output.reshape(shape) | |
attention_output = self.out_proj.forward(attention_output) | |
return attention_output | |
class EncoderSelfAttention(AttentionBase): | |
def forward( | |
self, | |
encoder_state: FloatTensor, | |
attention_mask: BoolTensor | |
) -> FloatTensor: | |
keys = self.k_proj.forward(encoder_state) | |
values = self.v_proj.forward(encoder_state) | |
queries = self.q_proj.forward(encoder_state) | |
return super().forward(keys, values, queries, attention_mask) | |
class EncoderLayer(nn.Module): | |
def __init__(self, embed_count: int, head_count: int, glu_embed_count: int): | |
super().__init__() | |
self.pre_self_attn_layer_norm = nn.LayerNorm(embed_count) | |
self.self_attn = EncoderSelfAttention(head_count, embed_count) | |
self.self_attn_layer_norm = nn.LayerNorm(embed_count) | |
self.glu = GLU(embed_count, glu_embed_count) | |
def forward( | |
self, | |
encoder_state: FloatTensor, | |
attention_mask: BoolTensor | |
) -> FloatTensor: | |
residual = encoder_state | |
encoder_state = self.pre_self_attn_layer_norm.forward(encoder_state) | |
encoder_state = self.self_attn.forward(encoder_state, attention_mask) | |
encoder_state = self.self_attn_layer_norm.forward(encoder_state) | |
encoder_state = residual + encoder_state | |
residual = encoder_state | |
encoder_state = self.glu.forward(encoder_state) | |
encoder_state = residual + encoder_state | |
return encoder_state | |
class DalleBartEncoder(nn.Module): | |
def __init__( | |
self, | |
layer_count: int, | |
embed_count: int, | |
attention_head_count: int, | |
text_vocab_count: int, | |
text_token_count: int, | |
glu_embed_count: int, | |
device: str | |
): | |
super().__init__() | |
self.text_vocab_count = text_vocab_count | |
self.embed_tokens = nn.Embedding(text_vocab_count, embed_count) | |
self.embed_positions = nn.Embedding(text_token_count, embed_count) | |
self.layers: List[EncoderLayer] = nn.ModuleList([ | |
EncoderLayer( | |
embed_count = embed_count, | |
head_count = attention_head_count, | |
glu_embed_count = glu_embed_count | |
) | |
for _ in range(layer_count) | |
]) | |
self.layernorm_embedding = nn.LayerNorm(embed_count) | |
self.final_ln = nn.LayerNorm(embed_count) | |
token_indices = torch.arange(text_token_count, device=device) | |
self.pose_tokens = torch.stack([token_indices] * 2) | |
def forward(self, text_tokens: LongTensor) -> FloatTensor: | |
attention_mask = text_tokens.not_equal(1) | |
encoder_state = ( | |
self.embed_tokens.forward(text_tokens) + | |
self.embed_positions.forward(self.pose_tokens) | |
) | |
encoder_state = self.layernorm_embedding.forward(encoder_state) | |
for layer in self.layers: | |
encoder_state = layer.forward(encoder_state, attention_mask) | |
encoder_state = self.final_ln.forward(encoder_state) | |
return encoder_state |