Spaces:
Sleeping
Sleeping
File size: 30,336 Bytes
d41bb77 d9725db d41bb77 d9725db d41bb77 d9725db d41bb77 701b9a8 d9725db d41bb77 63d684e d9725db 4966fe0 dbc131c 7731ef8 4966fe0 d41bb77 fcedab0 ed48666 d41bb77 ed48666 fcedab0 ed48666 d41bb77 ed48666 d41bb77 fcedab0 d41bb77 701b9a8 d9725db d41bb77 701b9a8 d9725db d41bb77 d9725db 4966fe0 7731ef8 4966fe0 d41bb77 fcedab0 ed48666 d41bb77 ed48666 fcedab0 ed48666 d41bb77 ed48666 fcedab0 d41bb77 fcedab0 d41bb77 fcedab0 563a290 d41bb77 d9725db d41bb77 d883055 d41bb77 d883055 d41bb77 d9725db d41bb77 d9725db d41bb77 d9725db d41bb77 ad9b26e d41bb77 d9725db d41bb77 d883055 d41bb77 d9725db d41bb77 d9725db d41bb77 d9725db ad9b26e d41bb77 fcedab0 d41bb77 fcedab0 d41bb77 fcedab0 d41bb77 fcedab0 d41bb77 fcedab0 d41bb77 fcedab0 d41bb77 fcedab0 d41bb77 fcedab0 d41bb77 fcedab0 d41bb77 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 |
import streamlit as st
import model_inferencing as MINFER
import general_bias_measurement as GBM
import model_comparison as MCOMP
import user_evaluation_variables
import pandas as pd
import numpy as np
import json
import csv
import string
from itertools import cycle
import random
import time
import datetime
import zipfile
from io import BytesIO, StringIO
def completed_setup(tabs, modelID):
with tabs[0]:
st.write("\U0001F917 ", modelID, " has been loaded!")
st.write("Ready for General Bias Evaluation")
with tabs[1]:
st.write("\U0001F917 ", modelID, " has been loaded!")
st.write("Ready for Task-Oriented Bias Evaluation")
with tabs[3]:
if not all([user_evaluation_variables.OBJECT_IMAGES_IN_UI, user_evaluation_variables.OCCUPATION_IMAGES_IN_UI, user_evaluation_variables.TASK_IMAGES_IN_UI]):
st.write("\U0001F917 ", modelID, " has been loaded!")
st.write("Waiting for Images to be generated.")
update_images_tab(tabs[3])
with tabs[0]:
general_bias_eval_setup(tabs[0], modelID, tabs[3])
with tabs[1]:
task_oriented_bias_eval_setup(tabs[1],modelID, tabs[3])
def general_bias_eval_setup(tab, modelID, imagesTab):
generalBiasSetupDF_EVAL = pd.DataFrame(
{
"GEN Eval. Variable": ["No. Images to Generate per prompt", "No. Inference Steps",
"Image Height - must be a value that is 2 to the power of N",
"Image Width - must be a value that is 2 to the power of N"],
"GEN Values": ["2", "10", "512", "512"],
}
)
generalBiasSetupDF_TYPE = pd.DataFrame(
{
"Image Types": ["Objects", "Person in Frame", "Occupations / Label"],
"Check": [True, True, True],
}
)
tableColumn1, tableColumn2 = st.columns(2)
with tab:
with tableColumn1:
GENValTable = st.data_editor(
generalBiasSetupDF_EVAL,
column_config={
"GEN Eval. Variable": st.column_config.Column(
"Variable",
help="General Bias Evaluation variable to control extent of evaluations",
width=None,
required=None,
disabled=True,
),
"GEN Values": st.column_config.Column(
"Values",
help="Input values in this column",
width=None,
required=True,
disabled=False,
),
},
hide_index=True,
num_rows="fixed",
)
with tableColumn2:
GENCheckTable = st.data_editor(
generalBiasSetupDF_TYPE,
column_config={
"Check": st.column_config.CheckboxColumn(
"Select",
help="Select the types of images you want to generate",
default=False,
)
},
disabled=["Image Types"],
hide_index=True,
num_rows="fixed",
)
st.info('Image sizes vary for each model but is generally one of [256, 512, 1024, 2048]. We found that for some models '
'lower image resolutions resulted in noise outputs (you are more than welcome to experiment with this). '
'Consult the model card if you are unsure what image resolution to use.', icon="ℹ️")
if not all([GENValTable["GEN Values"][0].isnumeric(), GENValTable["GEN Values"][1].isnumeric(),
GENValTable["GEN Values"][2].isnumeric(), GENValTable["GEN Values"][3].isnumeric()]):
st.error('Looks like you have entered non-numeric values! '
'Please enter numeric values in the table above', icon="🚨")
# elif not all([check_for_power_of_two(int(GENValTable["GEN Values"][2])), int(GENValTable["GEN Values"][2]) >= 8]):
# elif any([int(GENValTable["GEN Values"][2]), int(GENValTable["GEN Values"][3])]) < 8:
# st.error('Please ensure that your image resolution is 1 number greater than 8. Consult the model card to find the size of the images used'
# ' to train the model. Incompatible image resolutions may result in noisy output images', icon="🚨")
else:
if st.button('Evaluate!', key="EVAL_BUTTON_GEN"):
initiate_general_bias_evaluation(tab, modelID, [GENValTable, GENCheckTable], imagesTab)
st.rerun()
if user_evaluation_variables.RUN_TIME and user_evaluation_variables.CURRENT_EVAL_TYPE == 'general':
GBM.output_eval_results(user_evaluation_variables.EVAL_METRICS, 21, 'general')
genCSVData = create_word_distribution_csv(user_evaluation_variables.EVAL_METRICS,
user_evaluation_variables.EVAL_ID,
'general')
st.write("\U0001F553 Time Taken: ", user_evaluation_variables.RUN_TIME)
st.info("Make sure to download your object distribution data first before saving and uploading your evaluation results."
"\n Evaluation results are cleared and refreshed after uploading." , icon="ℹ️")
if user_evaluation_variables.EVAL_ID is not None:
st.download_button(label="Download Object Distribution data", data=genCSVData, key='SAVE_TOP_GEN',
file_name=user_evaluation_variables.EVAL_ID + '_general' + '_word_distribution.csv',
mime='text/csv')
saveEvalsButton = st.button("Save + Upload Evaluations", key='SAVE_EVAL_GEN')
if saveEvalsButton:
st.success("Saved and uploaded evaluations!", icon="✅")
user_evaluation_variables.update_evaluation_table('general',False)
user_evaluation_variables.reset_variables('general')
def task_oriented_bias_eval_setup(tab, modelID, imagesTab):
biasSetupDF_EVAL = pd.DataFrame(
{
"TO Eval. Variable": ["No. Images to Generate per prompt", "No. Inference Steps",
"Image Height - must be a value that is 2 to the power of N",
"Image Width - must be a value that is 2 to the power of N"],
"TO Values": ["2", "10", "512", "512"],
}
)
with tab:
TOValTable = st.data_editor(
biasSetupDF_EVAL,
column_config={
"TO Eval. Variable": st.column_config.Column(
"Variable",
help="General Bias Evaluation variable to control extent of evaluations",
width=None,
required=None,
disabled=True,
),
"TO Values": st.column_config.Column(
"Values",
help="Input values in this column",
width=None,
required=True,
disabled=False,
),
},
hide_index=True,
num_rows="fixed",
)
st.info('Image sizes vary for each model but is generally one of [256, 512, 1024, 2048]. We found that for some models '
'lower image resolutions resulted in noise outputs (you are more than welcome to experiment with this). '
'Consult the model card if you are unsure what image resolution to use.', icon="ℹ️")
target = st.text_input('What is the single-token target of your task-oriented evaluation study '
'e.g.: "burger", "coffee", "men", "women"')
if not all([TOValTable["TO Values"][0].isnumeric(), TOValTable["TO Values"][1].isnumeric(),
TOValTable["TO Values"][2].isnumeric(), TOValTable["TO Values"][3].isnumeric()]):
st.error('Looks like you have entered non-numeric values! '
'Please enter numeric values in the table above', icon="🚨")
# elif any([int(TOValTable["TO Values"][2]), int(TOValTable["TO Values"][3])]) < 8:
# st.error('Please ensure that your image width and heightgreater than 8. Consult the model card to find the size of the images used'
# ' to train the model. Incompatible image resolutions may result in noisy output images', icon="🚨")
else:
if st.button('Evaluate!', key="EVAL_BUTTON_TO"):
if len(target) > 0:
initiate_task_oriented_bias_evaluation(tab, modelID, TOValTable, target, imagesTab)
st.rerun()
else:
st.error('Please input a target for your task-oriented analysis', icon="🚨")
if user_evaluation_variables.RUN_TIME and user_evaluation_variables.CURRENT_EVAL_TYPE == 'task-oriented':
GBM.output_eval_results(user_evaluation_variables.EVAL_METRICS, 21, 'task-oriented')
taskCSVData = create_word_distribution_csv(user_evaluation_variables.EVAL_METRICS,
user_evaluation_variables.EVAL_ID,
user_evaluation_variables.TASK_TARGET)
st.write("\U0001F553 Time Taken: ", user_evaluation_variables.RUN_TIME)
st.info("Make sure to download your object distribution data first before saving and uploading your evaluation results."
"\n Evaluation results are cleared and refreshed after uploading." , icon="ℹ️")
if user_evaluation_variables.EVAL_ID is not None:
st.download_button(label="Download Object Distribution data", data=taskCSVData, key='SAVE_TOP_TASK',
file_name=user_evaluation_variables.EVAL_ID+'_'+user_evaluation_variables.TASK_TARGET+'_word_distribution.csv',
mime='text/csv')
saveEvalsButton = st.button("Save + Upload Evaluations", key='SAVE_EVAL_TASK')
if saveEvalsButton:
st.success("Saved and uploaded evaluations!", icon="✅")
user_evaluation_variables.update_evaluation_table('task-oriented', False)
user_evaluation_variables.reset_variables('task-oriented')
def create_word_distribution_csv(data, evalID, evalType):
listOfObjects = list(data[0].items())
csvContents = [["Evaluation Type/Target", evalType],
["Evaluation ID", evalID],
["Distribution Bias", data[2]],
["Jaccard hallucination", np.mean(data[3])],
["Generative Miss Rate", np.mean(data[4])],
['Position', 'Object', 'No. Occurences', 'Normalized']]
for obj, val, norm, ii in zip(listOfObjects, data[0].values(), data[1], range(len(listOfObjects))):
csvContents.append([ii, obj[0], val, norm])
return pd.DataFrame(csvContents).to_csv(header=False,index=False).encode('utf-8')
def check_for_power_of_two(x):
if (x == 0):
return False
while (x != 1):
if (x % 2 != 0):
return False
x = x // 2
return True
def initiate_general_bias_evaluation(tab, modelID, specs, imagesTab):
startTime = time.time()
objectData = None
occupationData = None
objects = []
actions = []
occupations = []
occupationDescriptors = []
objectPrompts = None
occupationPrompts = None
objectImages = []
objectCaptions = []
occupationImages = []
occupationCaptions = []
evaluationImages = []
evaluationCaptions = []
with tab:
st.write("Initiating General Bias Evaluation Experiments with the following setup:")
st.write(" ***Model*** = ", modelID)
infoColumn1, infoColumn2 = st.columns(2)
with infoColumn1:
st.write(" ***No. Images per prompt*** = ", specs[0]["GEN Values"][0])
st.write(" ***No. Steps*** = ", specs[0]["GEN Values"][1])
st.write(" ***Image Size*** = ", specs[0]["GEN Values"][2], "$\\times$", specs[0]["GEN Values"][3])
with infoColumn2:
st.write(" ***Objects*** = ", specs[1]["Check"][0])
st.write(" ***Objects and Actions*** = ", specs[1]["Check"][1])
st.write(" ***Occupations*** = ", specs[1]["Check"][2])
st.markdown("___")
if specs[1]["Check"][0]:
objectData = read_csv_to_list("data/list_of_objects.csv")
if specs[1]["Check"][2]:
occupationData = read_csv_to_list("data/list_of_occupations.csv")
if objectData == None and occupationData == None:
st.error('Make sure that at least one of the "Objects" or "Occupations" rows are checked', icon="🚨")
else:
if specs[1]["Check"][0]:
for row in objectData[1:]:
objects.append(row[0])
if specs[1]["Check"][1]:
for row in objectData[1:]:
actions.append(row[1:])
if specs[1]["Check"][2]:
for row in occupationData[1:]:
occupations.append(row[0])
occupationDescriptors.append(row[1:])
with infoColumn1:
st.write("***No. Objects*** = ", len(objects))
st.write("***No. Actions*** = ", len(actions)*3)
with infoColumn2:
st.write("***No. Occupations*** = ", len(occupations))
st.write("***No. Occupation Descriptors*** = ", len(occupationDescriptors)*3)
if len(objects) > 0:
objectPrompts = MINFER.construct_general_bias_evaluation_prompts(objects, actions)
if len(occupations) > 0:
occupationPrompts = MINFER.construct_general_bias_evaluation_prompts(occupations, occupationDescriptors)
if objectPrompts is not None:
OBJECTprogressBar = st.progress(0, text="Generating Object-related images. Please wait.")
objectImages, objectCaptions = MINFER.generate_test_images(OBJECTprogressBar, "Generating Object-related images. Please wait.",
objectPrompts, int(specs[0]["GEN Values"][0]),
int(specs[0]["GEN Values"][1]), int(specs[0]["GEN Values"][2]),
int(specs[0]["GEN Values"][3]))
evaluationImages+=objectImages
evaluationCaptions+=objectCaptions[0]
TXTObjectPrompts = ""
if occupationPrompts is not None:
OCCprogressBar = st.progress(0, text="Generating Occupation-related images. Please wait.")
occupationImages, occupationCaptions = MINFER.generate_test_images(OCCprogressBar, "Generating Occupation-related images. Please wait.",
occupationPrompts, int(specs[0]["GEN Values"][0]),
int(specs[0]["GEN Values"][1]), int(specs[0]["GEN Values"][2]),
int(specs[0]["GEN Values"][3]))
evaluationImages += occupationImages
evaluationCaptions += occupationCaptions[0]
if len(evaluationImages) > 0:
EVALprogressBar = st.progress(0, text="Evaluating "+modelID+" Model Images. Please wait.")
user_evaluation_variables.EVAL_METRICS = GBM.evaluate_t2i_model_images(evaluationImages, evaluationCaptions, EVALprogressBar, False, "GENERAL")
# GBM.output_eval_results(user_evaluation_variables.EVAL_METRICS, 21)
elapsedTime = time.time() - startTime
user_evaluation_variables.NO_SAMPLES = len(evaluationImages)
user_evaluation_variables.RESOLUTION = specs[0]["GEN Values"][2] + "x" + specs[0]["GEN Values"][2]
user_evaluation_variables.INFERENCE_STEPS = int(specs[0]["GEN Values"][1])
user_evaluation_variables.GEN_OBJECTS = bool(specs[1]["Check"][0])
user_evaluation_variables.GEN_ACTIONS = bool(specs[1]["Check"][1])
user_evaluation_variables.GEN_OCCUPATIONS = bool(specs[1]["Check"][2])
user_evaluation_variables.DIST_BIAS = float(f"{user_evaluation_variables.EVAL_METRICS[2]:.4f}")
user_evaluation_variables.HALLUCINATION = float(f"{np.mean(user_evaluation_variables.EVAL_METRICS[3]):.4f}")
user_evaluation_variables.MISS_RATE = float(f"{np.mean(user_evaluation_variables.EVAL_METRICS[4]):.4f}")
user_evaluation_variables.EVAL_ID = ''.join(random.choices(string.ascii_letters + string.digits, k=16))
user_evaluation_variables.DATE = datetime.datetime.utcnow().strftime('%d-%m-%Y')
user_evaluation_variables.TIME = datetime.datetime.utcnow().strftime('%H:%M:%S')
user_evaluation_variables.RUN_TIME = str(datetime.timedelta(seconds=elapsedTime)).split(".")[0]
user_evaluation_variables.OBJECT_IMAGES =objectImages
user_evaluation_variables.OBJECT_CAPTIONS = objectCaptions
user_evaluation_variables.OCCUPATION_IMAGES = occupationImages
user_evaluation_variables.OCCUPATION_CAPTIONS = occupationCaptions
user_evaluation_variables.CURRENT_EVAL_TYPE = 'general'
st.write("General Bias Evaluation ID:\t", user_evaluation_variables.EVAL_ID)
def initiate_task_oriented_bias_evaluation(tab, modelID, specs, target, imagesTab):
startTime = time.time()
TASKImages = []
TASKCaptions = []
with tab:
st.write("Initiating Task-Oriented Bias Evaluation Experiments with the following setup:")
st.write(" ***Model*** = ", modelID)
infoColumn1, infoColumn2 = st.columns(2)
st.write(" ***No. Images per prompt*** = ", specs["TO Values"][0])
st.write(" ***No. Steps*** = ", specs["TO Values"][1])
st.write(" ***Image Size*** = ", specs["TO Values"][2], "$\\times$", specs["TO Values"][3])
st.write(" ***Target*** = ", target.lower())
st.markdown("___")
captionsToExtract = 50
if (captionsToExtract * int(specs['TO Values'][0])) < 30:
st.error('There should be at least 30 images generated, You are attempting to generate:\t'
+ str(captionsToExtract * int(specs['TO Values'][0]))+'.\nPlease readjust your No. Images per prompt',
icon="🚨")
else:
COCOLoadingBar = st.progress(0, text="Scanning through COCO Dataset for relevant prompts. Please wait")
prompts, cocoIDs = get_COCO_captions('data/COCO_captions.json', target.lower(), COCOLoadingBar, captionsToExtract)
if len(prompts) == 0:
st.error('Woops! Could not find **ANY** relevant COCO prompts for the target: '+target.lower()+
'\nPlease input a different target', icon="🚨")
elif len(prompts) > 0 and len(prompts) < captionsToExtract:
st.warning('WARNING: Only found '+str(len(prompts))+ ' relevant COCO prompts for the target: '+target.lower()+
'\nWill work with these. Nothing to worry about!', icon="⚠️")
else:
st.success('Successfully found '+str(captionsToExtract)+' relevant COCO prompts', icon="✅")
if len(prompts) > 0:
COCOUIOutput = []
for id, pr in zip(cocoIDs, prompts):
COCOUIOutput.append([id, pr])
st.write('**Here are some of the randomised '+'"'+target.lower()+'"'+' captions extracted from the COCO dataset**')
COCOUIOutput.insert(0, ('ID', 'Caption'))
st.table(COCOUIOutput[:11])
TASKprogressBar = st.progress(0, text="Generating Task-oriented images. Please wait.")
TASKImages, TASKCaptions = MINFER.generate_task_oriented_images(TASKprogressBar,"Generating Task-oriented images. Please wait.",
prompts, cocoIDs, int(specs["TO Values"][0]),
int(specs["TO Values"][1]), int(specs["TO Values"][2]),
int(specs["TO Values"][3]))
EVALprogressBar = st.progress(0, text="Evaluating " + modelID + " Model Images. Please wait.")
user_evaluation_variables.EVAL_METRICS = GBM.evaluate_t2i_model_images(TASKImages, TASKCaptions[0], EVALprogressBar, False, "TASK")
elapsedTime = time.time() - startTime
user_evaluation_variables.NO_SAMPLES = len(TASKImages)
user_evaluation_variables.RESOLUTION = specs["TO Values"][2]+"x"+specs["TO Values"][2]
user_evaluation_variables.INFERENCE_STEPS = int(specs["TO Values"][1])
user_evaluation_variables.DIST_BIAS = float(f"{user_evaluation_variables.EVAL_METRICS[2]:.4f}")
user_evaluation_variables.HALLUCINATION = float(f"{np.mean(user_evaluation_variables.EVAL_METRICS[3]):.4f}")
user_evaluation_variables.MISS_RATE = float(f"{np.mean(user_evaluation_variables.EVAL_METRICS[4]):.4f}")
user_evaluation_variables.TASK_TARGET = target.lower()
user_evaluation_variables.EVAL_ID = ''.join(random.choices(string.ascii_letters + string.digits, k=16))
user_evaluation_variables.DATE = datetime.datetime.utcnow().strftime('%d-%m-%Y')
user_evaluation_variables.TIME = datetime.datetime.utcnow().strftime('%H:%M:%S')
user_evaluation_variables.RUN_TIME = str(datetime.timedelta(seconds=elapsedTime)).split(".")[0]
user_evaluation_variables.TASK_IMAGES = TASKImages
user_evaluation_variables.TASK_CAPTIONS = TASKCaptions
user_evaluation_variables.TASK_COCOIDs = cocoIDs
user_evaluation_variables.CURRENT_EVAL_TYPE = 'task-oriented'
st.write("Task-oriented Evaluation ID:\t", user_evaluation_variables.EVAL_ID)
def download_and_zip_images(zipImagePath, images, captions, imageType):
if imageType == 'object':
csvFileName = 'object_prompts.csv'
buttonText = "Download Object-related Images"
buttonKey = "DOWNLOAD_IMAGES_OBJECT"
elif imageType == 'occupation':
csvFileName = 'occupation_prompts.csv'
buttonText = "Download Occupation-related Images"
buttonKey = "DOWNLOAD_IMAGES_OCCUPATION"
else:
csvFileName = 'task-oriented_prompts.csv'
buttonText = "Download Task-oriented Images"
buttonKey = "DOWNLOAD_IMAGES_TASK"
with st.spinner("Zipping images..."):
with zipfile.ZipFile(zipImagePath, 'w') as img_zip:
for idx, image in enumerate(images):
imgName = captions[1][idx]
imageFile = BytesIO()
image.save(imageFile, 'JPEG')
img_zip.writestr(imgName, imageFile.getvalue())
# Saving prompt data as accompanying csv file
string_buffer = StringIO()
csvwriter = csv.writer(string_buffer)
if imageType in ['object', 'occupation']:
csvwriter.writerow(['No.', 'Prompt'])
for prompt, ii in zip(captions[0], range(len(captions[0]))):
csvwriter.writerow([ii + 1, prompt])
else:
csvwriter.writerow(['COCO ID', 'Prompt'])
for prompt, id in zip(captions[0], user_evaluation_variables.TASK_COCOIDs):
csvwriter.writerow([id, prompt])
img_zip.writestr(csvFileName, string_buffer.getvalue())
with open(zipImagePath, 'rb') as f:
st.download_button(label=buttonText, data=f, key=buttonKey,
file_name=zipImagePath)
def update_images_tab(imagesTab):
with imagesTab:
if len(user_evaluation_variables.OBJECT_IMAGES) > 0:
with st.expander('Object-related Images'):
user_evaluation_variables.OBJECT_IMAGES_IN_UI = True
TXTObjectPrompts = ""
for prompt, ii in zip(user_evaluation_variables.OBJECT_CAPTIONS[0], range(len(user_evaluation_variables.OBJECT_CAPTIONS[0]))):
TXTObjectPrompts += str(1 + ii) + '. ' + prompt + '\n'
st.write("**Object-related General Bias Evaluation Images**")
st.write("Number of Generated Images = ", len(user_evaluation_variables.OBJECT_IMAGES))
st.write("Corresponding Number of *unique* Captions = ", len(user_evaluation_variables.OBJECT_CAPTIONS[0]))
st.text_area("***List of Object Prompts***",
TXTObjectPrompts,
height=400,
disabled=False,
key='TEXT_AREA_OBJECT')
cols = cycle(st.columns(3))
for idx, image in enumerate(user_evaluation_variables.OBJECT_IMAGES):
next(cols).image(image, width=225, caption=user_evaluation_variables.OBJECT_CAPTIONS[1][idx])
zipPath = 'TBYB_' + user_evaluation_variables.USERNAME + '_' + user_evaluation_variables.DATE + '_' + user_evaluation_variables.TIME + '_object_related_images.zip'
download_and_zip_images(zipPath, user_evaluation_variables.OBJECT_IMAGES,
user_evaluation_variables.OBJECT_CAPTIONS, 'object')
if len(user_evaluation_variables.OCCUPATION_IMAGES) > 0:
user_evaluation_variables.OCCUPATION_IMAGES_IN_UI = True
with st.expander('Occupation-related Images'):
TXTOccupationPrompts = ""
for prompt, ii in zip(user_evaluation_variables.OCCUPATION_CAPTIONS[0], range(len(user_evaluation_variables.OCCUPATION_CAPTIONS[0]))):
TXTOccupationPrompts += str(1 + ii) + '. ' + prompt + '\n'
st.write("**Occupation-related General Bias Evaluation Images**")
st.write("Number of Generated Images = ", len(user_evaluation_variables.OCCUPATION_IMAGES))
st.write("Corresponding Number of *unique* Captions = ", len(user_evaluation_variables.OCCUPATION_CAPTIONS[0]))
st.text_area("***List of Occupation Prompts***",
TXTOccupationPrompts,
height=400,
disabled=False,
key='TEXT_AREA_OCCU')
cols = cycle(st.columns(3))
for idx, image in enumerate(user_evaluation_variables.OCCUPATION_IMAGES):
next(cols).image(image, width=225, caption=user_evaluation_variables.OCCUPATION_CAPTIONS[1][idx])
zipPath = 'TBYB_' + user_evaluation_variables.USERNAME + '_' + user_evaluation_variables.DATE + '_' + user_evaluation_variables.TIME + '_occupation_related_images.zip'
download_and_zip_images(zipPath, user_evaluation_variables.OCCUPATION_IMAGES,
user_evaluation_variables.OCCUPATION_CAPTIONS, 'occupation')
if len(user_evaluation_variables.TASK_IMAGES) > 0:
with st.expander(user_evaluation_variables.TASK_TARGET+'-related Images'):
user_evaluation_variables.TASK_IMAGES_IN_UI = True
TXTTaskPrompts = ""
for prompt, id in zip(user_evaluation_variables.TASK_CAPTIONS[0], user_evaluation_variables.TASK_COCOIDs):
TXTTaskPrompts += "ID_" + str(id) + '. ' + prompt + '\n'
st.write("**Task-oriented Bias Evaluation Images. Target** = ", user_evaluation_variables.TASK_TARGET)
st.write("Number of Generated Images = ", len(user_evaluation_variables.TASK_IMAGES))
st.write("Corresponding Number of *unique* Captions = ", len(user_evaluation_variables.TASK_CAPTIONS[0]))
st.text_area("***List of Task-Oriented Prompts***",
TXTTaskPrompts,
height=400,
disabled=False,
key='TEXT_AREA_TASK')
cols = cycle(st.columns(3))
for idx, image in enumerate(user_evaluation_variables.TASK_IMAGES):
next(cols).image(image, width=225, caption=user_evaluation_variables.TASK_CAPTIONS[1][idx])
zipPath = 'TBYB_' + user_evaluation_variables.USERNAME + '_' + user_evaluation_variables.DATE + '_' + user_evaluation_variables.TIME + '_' + user_evaluation_variables.TASK_TARGET + '_related_images.zip'
download_and_zip_images(zipPath, user_evaluation_variables.TASK_IMAGES,
user_evaluation_variables.TASK_CAPTIONS, 'task-oriented')
def get_COCO_captions(filePath, target, progressBar, NPrompts=50):
captionData = json.load(open(filePath))
COCOCaptions = []
COCOIDs = []
random.seed(42)
random.shuffle(captionData['annotations'])
for anno, pp in zip(captionData['annotations'], range(len(captionData['annotations']))):
if target in anno.get('caption').lower().split(' '):
if len(COCOCaptions) < NPrompts:
COCOCaptions.append(anno.get('caption').lower())
COCOIDs.append(str(anno.get('id')))
percentComplete = pp/len(captionData['annotations'])
progressBar.progress(percentComplete, text="Scanning through COCO Dataset for relevant prompts. Please wait")
return (COCOCaptions, COCOIDs)
def read_csv_to_list(filePath):
data = []
with open(filePath, 'r', newline='') as csvfile:
csvReader = csv.reader(csvfile)
for row in csvReader:
data.append(row)
return data
|