Spaces:
Paused
Paused
File size: 11,636 Bytes
e6d6bb1 4b56fbf e6d6bb1 0ae5ec9 e6d6bb1 d07b6f4 645c216 4b56fbf d07b6f4 645c216 a0ad823 d07b6f4 645c216 0ae5ec9 645c216 015a5f1 645c216 015a5f1 645c216 ea3ebc0 645c216 8fe2bf8 645c216 28cee66 645c216 8fe2bf8 645c216 8fe2bf8 645c216 a0ad823 645c216 d07b6f4 28cee66 d07b6f4 4b56fbf d07b6f4 b0f46ba 0ae5ec9 645c216 0e6fd1f 4b56fbf ea3ebc0 0ae5ec9 ea3ebc0 645c216 ea3ebc0 4b56fbf d07b6f4 ea3ebc0 d07b6f4 ea3ebc0 645c216 d07b6f4 4b56fbf d07b6f4 645c216 0ae5ec9 b0f46ba 0ae5ec9 645c216 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 |
import os
import traceback
import numpy as np
from sklearn.cluster import MiniBatchKMeans
os.environ["PYTORCH_JIT"] = "0v"
from random import shuffle
import gradio as gr
import zipfile
import tempfile
import shutil
import faiss
from glob import glob
from infer.modules.train.preprocess import PreProcess
from infer.modules.train.extract.extract_f0_rmvpe import FeatureInput
from infer.modules.train.extract_feature_print import HubertFeatureExtractor
from infer.modules.train.train import train
from infer.lib.train.process_ckpt import extract_small_model
from zero import zero
# patch for jit script
# if we find `def expand_2d_or_3d_tensor(x,` in /usr/local/lib/python3.10/site-packages/fairseq/models/model_utils.py
# patch it with `def expand_2d_or_3d_tensor(x: Tensor,`
FAIRSEQ_CODE = "/usr/local/lib/python3.10/site-packages/fairseq/models/model_utils.py"
if os.path.exists(FAIRSEQ_CODE):
with open(FAIRSEQ_CODE, "r") as f:
lines = f.readlines()
with open(FAIRSEQ_CODE, "w") as f:
for line in lines:
if "def expand_2d_or_3d_tensor(x, trg_dim: int, padding_idx: int):" in line:
f.write(
"def expand_2d_or_3d_tensor(x: Tensor, trg_dim: int, padding_idx: int) -> Tensor:\n"
)
else:
f.write(line)
def extract_audio_files(zip_file: str, target_dir: str) -> list[str]:
with zipfile.ZipFile(zip_file, "r") as zip_ref:
zip_ref.extractall(target_dir)
audio_files = [
os.path.join(target_dir, f)
for f in os.listdir(target_dir)
if f.endswith((".wav", ".mp3", ".ogg"))
]
if not audio_files:
raise gr.Error("No audio files found at the top level of the zip file")
return audio_files
def preprocess(zip_file: str) -> str:
temp_dir = tempfile.mkdtemp()
print(f"Using exp dir: {temp_dir}")
data_dir = os.path.join(temp_dir, "_data")
os.makedirs(data_dir)
audio_files = extract_audio_files(zip_file, data_dir)
pp = PreProcess(40000, temp_dir, 3.0, False)
pp.pipeline_mp_inp_dir(data_dir, 4)
pp.logfile.seek(0)
log = pp.logfile.read()
return temp_dir, f"Preprocessed {len(audio_files)} audio files.\n{log}"
@zero(duration=300)
def extract_features(exp_dir: str) -> str:
err = None
fi = FeatureInput(exp_dir)
try:
fi.run()
except Exception as e:
err = e
fi.logfile.seek(0)
log = fi.logfile.read()
if err:
log = f"Error: {err}\n{log}"
return log
hfe = HubertFeatureExtractor(exp_dir)
try:
hfe.run()
except Exception as e:
err = e
hfe.logfile.seek(0)
log += hfe.logfile.read()
if err:
log = f"Error: {err}\n{log}"
return log
def write_filelist(exp_dir: str) -> None:
if_f0_3 = True
spk_id5 = 0
gt_wavs_dir = "%s/0_gt_wavs" % (exp_dir)
feature_dir = "%s/3_feature768" % (exp_dir)
if if_f0_3:
f0_dir = "%s/2a_f0" % (exp_dir)
f0nsf_dir = "%s/2b-f0nsf" % (exp_dir)
names = (
set([name.split(".")[0] for name in os.listdir(gt_wavs_dir)])
& set([name.split(".")[0] for name in os.listdir(feature_dir)])
& set([name.split(".")[0] for name in os.listdir(f0_dir)])
& set([name.split(".")[0] for name in os.listdir(f0nsf_dir)])
)
else:
names = set([name.split(".")[0] for name in os.listdir(gt_wavs_dir)]) & set(
[name.split(".")[0] for name in os.listdir(feature_dir)]
)
opt = []
for name in names:
if if_f0_3:
opt.append(
"%s/%s.wav|%s/%s.npy|%s/%s.wav.npy|%s/%s.wav.npy|%s"
% (
gt_wavs_dir.replace("\\", "\\\\"),
name,
feature_dir.replace("\\", "\\\\"),
name,
f0_dir.replace("\\", "\\\\"),
name,
f0nsf_dir.replace("\\", "\\\\"),
name,
spk_id5,
)
)
else:
opt.append(
"%s/%s.wav|%s/%s.npy|%s"
% (
gt_wavs_dir.replace("\\", "\\\\"),
name,
feature_dir.replace("\\", "\\\\"),
name,
spk_id5,
)
)
fea_dim = 768
now_dir = os.getcwd()
sr2 = "40k"
if if_f0_3:
for _ in range(2):
opt.append(
"%s/logs/mute/0_gt_wavs/mute%s.wav|%s/logs/mute/3_feature%s/mute.npy|%s/logs/mute/2a_f0/mute.wav.npy|%s/logs/mute/2b-f0nsf/mute.wav.npy|%s"
% (now_dir, sr2, now_dir, fea_dim, now_dir, now_dir, spk_id5)
)
else:
for _ in range(2):
opt.append(
"%s/logs/mute/0_gt_wavs/mute%s.wav|%s/logs/mute/3_feature%s/mute.npy|%s"
% (now_dir, sr2, now_dir, fea_dim, spk_id5)
)
shuffle(opt)
with open("%s/filelist.txt" % exp_dir, "w") as f:
f.write("\n".join(opt))
@zero(duration=300)
def train_model(exp_dir: str) -> str:
shutil.copy("config.json", exp_dir)
write_filelist(exp_dir)
train(exp_dir)
models = glob(f"{exp_dir}/G_*.pth")
print(models)
if not models:
raise gr.Error("No model found")
latest_model = max(models, key=os.path.getctime)
return latest_model
def download_weight(exp_dir: str) -> str:
models = glob(f"{exp_dir}/G_*.pth")
if not models:
raise gr.Error("No model found")
latest_model = max(models, key=os.path.getctime)
name = os.path.basename(exp_dir)
extract_small_model(
latest_model, name, "40k", True, "Model trained by ZeroGPU.", "v2"
)
return "assets/weights/%s.pth" % name
def train_index(exp_dir: str) -> str:
feature_dir = "%s/3_feature768" % (exp_dir)
if not os.path.exists(feature_dir):
raise gr.Error("Please extract features first.")
listdir_res = list(os.listdir(feature_dir))
if len(listdir_res) == 0:
raise gr.Error("Please extract features first.")
npys = []
for name in sorted(listdir_res):
phone = np.load("%s/%s" % (feature_dir, name))
npys.append(phone)
big_npy = np.concatenate(npys, 0)
big_npy_idx = np.arange(big_npy.shape[0])
np.random.shuffle(big_npy_idx)
big_npy = big_npy[big_npy_idx]
if big_npy.shape[0] > 2e5:
print("Trying doing kmeans %s shape to 10k centers." % big_npy.shape[0])
try:
big_npy = (
MiniBatchKMeans(
n_clusters=10000,
verbose=True,
batch_size=256 * 8,
compute_labels=False,
init="random",
)
.fit(big_npy)
.cluster_centers_
)
except:
info = traceback.format_exc()
print(info)
raise gr.Error(info)
np.save("%s/total_fea.npy" % exp_dir, big_npy)
n_ivf = min(int(16 * np.sqrt(big_npy.shape[0])), big_npy.shape[0] // 39)
print("%s,%s" % (big_npy.shape, n_ivf))
index = faiss.index_factory(768, "IVF%s,Flat" % n_ivf)
# index = faiss.index_factory(256if version19=="v1"else 768, "IVF%s,PQ128x4fs,RFlat"%n_ivf)
print("training")
index_ivf = faiss.extract_index_ivf(index) #
index_ivf.nprobe = 1
index.train(big_npy)
faiss.write_index(
index,
"%s/trained_IVF%s_Flat_nprobe_%s.index" % (exp_dir, n_ivf, index_ivf.nprobe),
)
print("adding")
batch_size_add = 8192
for i in range(0, big_npy.shape[0], batch_size_add):
index.add(big_npy[i : i + batch_size_add])
faiss.write_index(
index,
"%s/added_IVF%s_Flat_nprobe_%s.index" % (exp_dir, n_ivf, index_ivf.nprobe),
)
print("built added_IVF%s_Flat_nprobe_%s.index" % (n_ivf, index_ivf.nprobe))
return "%s/added_IVF%s_Flat_nprobe_%s.index" % (exp_dir, n_ivf, index_ivf.nprobe)
def download_expdir(exp_dir: str) -> str:
shutil.make_archive(exp_dir, "zip", exp_dir)
return f"{exp_dir}.zip"
def restore_expdir(zip: str) -> str:
exp_dir = tempfile.mkdtemp()
shutil.unpack_archive(zip, exp_dir)
return exp_dir
with gr.Blocks() as app:
# allow user to manually select the experiment directory
exp_dir = gr.Textbox(label="Experiment directory (don't touch it unless you know what you are doing)", visible=True, interactive=True)
with gr.Tabs():
with gr.Tab(label="New / Restore"):
with gr.Row():
with gr.Column():
zip_file = gr.File(
label="Upload a zip file containing audio files for training",
file_types=["zip"],
)
preprocess_output = gr.Textbox(
label="Preprocessing output", lines=5
)
with gr.Column():
preprocess_btn = gr.Button(
value="Start New Experiment", variant="primary"
)
with gr.Row():
restore_zip_file = gr.File(
label="Upload the experiment directory zip file",
file_types=["zip"],
)
restore_btn = gr.Button(value="Restore Experiment", variant="primary")
with gr.Tab(label="Extract features"):
with gr.Row():
extract_features_btn = gr.Button(
value="Extract features", variant="primary"
)
with gr.Row():
extract_features_output = gr.Textbox(
label="Feature extraction output", lines=10
)
with gr.Tab(label="Train"):
with gr.Row():
train_btn = gr.Button(value="Train", variant="primary")
latest_model = gr.File(label="Latest checkpoint")
with gr.Row():
train_index_btn = gr.Button(value="Train index", variant="primary")
trained_index = gr.File(label="Trained index")
with gr.Tab(label="Download"):
with gr.Row():
download_weight_btn = gr.Button(
value="Download latest model", variant="primary"
)
download_weight_output = gr.File(label="Download latest model")
with gr.Row():
download_expdir_btn = gr.Button(
value="Download experiment directory", variant="primary"
)
download_expdir_output = gr.File(label="Download experiment directory")
preprocess_btn.click(
fn=preprocess,
inputs=[zip_file],
outputs=[exp_dir, preprocess_output],
)
extract_features_btn.click(
fn=extract_features,
inputs=[exp_dir],
outputs=[extract_features_output],
)
train_btn.click(
fn=train_model,
inputs=[exp_dir],
outputs=[latest_model],
)
train_index_btn.click(
fn=train_index,
inputs=[exp_dir],
outputs=[trained_index],
)
download_weight_btn.click(
fn=download_weight,
inputs=[exp_dir],
outputs=[download_weight_output],
)
download_expdir_btn.click(
fn=download_expdir,
inputs=[exp_dir],
outputs=[download_expdir_output],
)
restore_btn.click(
fn=restore_expdir,
inputs=[restore_zip_file],
outputs=[exp_dir],
)
app.launch()
|