Spaces:
Sleeping
Sleeping
import streamlit as st # type: ignore | |
import numpy as np | |
import pandas as pd | |
import seaborn as sn | |
import matplotlib.pyplot as plt | |
from plotly import graph_objs as go | |
from sklearn.linear_model import LinearRegression | |
st.set_option('deprecation.showPyplotGlobalUse', False) | |
data = pd.read_csv('Salary_Data.csv') | |
st.write(data.head()) | |
X = np.array(data[['YearsExperience']]) | |
lr = LinearRegression() | |
lr.fit(X, np.array(data.Salary)) | |
nav = st.sidebar.radio('Navigation',['Home','Prediction', 'About']) | |
if nav == 'Home': | |
col1,col2,col3 = st.columns([1,2,1]) | |
with col2: | |
st.title('Salary Prediction') | |
st.image('salary.jpg',width=600) | |
if st.checkbox('Show Table'): | |
st.write(data) | |
graph = st.selectbox('What kind of graph you want to plot?',['Non interactive','Interactive']) | |
val = st.slider('Filter data using Years', 0,20) | |
data = data.loc[data.YearsExperience>= val] | |
if graph == 'Non interactive': | |
plt.figure(figsize=(10,5)) | |
plt.scatter(data.YearsExperience,data.Salary) | |
plt.xlabel('Years of experience') | |
plt.ylabel('Salaries') | |
st.pyplot() | |
else: | |
layout = go.Layout(xaxis = dict(range=[0,16]), | |
yaxis = dict(range=[0,210000])) | |
fig = go.Figure(data=go.Scatter(x=data.YearsExperience,y=data.Salary, | |
mode='markers'),layout=layout) | |
st.plotly_chart(fig) | |
elif nav == 'Prediction': | |
st.header('Know your salary') | |
values = st.number_input('Enter your exp',0,20,step=1) | |
values = np.array(values).reshape(-1,1) | |
pred = lr.predict(values)[0] | |
if st.button('Predict'): | |
st.success(f"Your Predicted Salary is {round(pred)}") |