|
import gradio as gr |
|
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM, pipeline |
|
import torch |
|
|
|
|
|
model = AutoModelForSeq2SeqLM.from_pretrained("Jayyydyyy/m2m100_418m_tokipona") |
|
tokenizer = AutoTokenizer.from_pretrained("facebook/m2m100_418M") |
|
device = "cuda:0" if torch.cuda.is_available() else "cpu" |
|
LANG_CODES = { |
|
"English":"en", |
|
"toki pona":"tl" |
|
} |
|
|
|
def translate(text, src_lang, tgt_lang, candidates:int): |
|
""" |
|
Translate the text from source lang to target lang |
|
""" |
|
|
|
src = LANG_CODES.get(src_lang) |
|
tgt = LANG_CODES.get(tgt_lang) |
|
|
|
tokenizer.src_lang = src |
|
tokenizer.tgt_lang = tgt |
|
|
|
ins = tokenizer(text, return_tensors='pt').to(device) |
|
|
|
gen_args = { |
|
'return_dict_in_generate': True, |
|
'output_scores': True, |
|
'output_hidden_states': True, |
|
'length_penalty': 0.0, |
|
'num_return_sequences': candidates, |
|
'num_beams':candidates, |
|
'forced_bos_token_id': tokenizer.lang_code_to_id[tgt] |
|
} |
|
|
|
|
|
outs = model.generate(**{**ins, **gen_args}) |
|
output = tokenizer.batch_decode(outs.sequences, skip_special_tokens=True) |
|
|
|
return output |
|
|
|
app = gr.Interface( |
|
fn=translate, |
|
inputs=[ |
|
gr.components.Textbox(label="Text"), |
|
gr.components.Dropdown(label="Source Language", choices=LANG_CODES.keys()), |
|
gr.components.Dropdown(label="Target Language", choices=LANG_CODES.keys()), |
|
gr.Slider(label="Number of return sequences", value=1, minimum=1, maximum=12) |
|
], |
|
outputs=["text"], |
|
examples=[["This is an example statement. It will be translated from English to toki pona.", "English", "toki pona"]], |
|
cache_examples=False, |
|
title="A simple English / toki pona Neural Translation App", |
|
description="A simple English / toki pona Neural Translation App" |
|
) |
|
|
|
app.launch() |