File size: 17,287 Bytes
7dd822c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dc95783
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ba34ca9
 
 
dc95783
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7dd822c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
import gradio as gr
import os

from langchain_community.document_loaders import PyPDFLoader
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain_community.vectorstores import Chroma
from langchain.chains import ConversationalRetrievalChain
from langchain_community.embeddings import HuggingFaceEmbeddings 
from langchain_community.llms import HuggingFacePipeline
from langchain.chains import ConversationChain
from langchain.memory import ConversationBufferMemory
from langchain_community.llms import HuggingFaceEndpoint

from pathlib import Path
import chromadb
from unidecode import unidecode

from transformers import AutoTokenizer
import transformers
import torch
import tqdm 
import accelerate
import re



# default_persist_directory = './chroma_HF/'
list_llm = ["mistralai/Mistral-7B-Instruct-v0.2", "mistralai/Mixtral-8x7B-Instruct-v0.1", "mistralai/Mistral-7B-Instruct-v0.1", \
    "google/gemma-7b-it","google/gemma-2b-it", \
    "HuggingFaceH4/zephyr-7b-beta", "HuggingFaceH4/zephyr-7b-gemma-v0.1", \
    "meta-llama/Llama-2-7b-chat-hf", "microsoft/phi-2", \
    "TinyLlama/TinyLlama-1.1B-Chat-v1.0", "mosaicml/mpt-7b-instruct", "tiiuae/falcon-7b-instruct", \
    "google/flan-t5-xxl"
]
list_llm_simple = [os.path.basename(llm) for llm in list_llm]

# Load PDF document and create doc splits
def load_doc(list_file_path, chunk_size, chunk_overlap):
    # Processing for one document only
     #loader = PyPDFLoader(file_path)
     #pages = loader.load()
    loaders = [PyPDFLoader(x) for x in list_file_path]
    pages = []
    for loader in loaders:
        pages.extend(loader.load())
    # text_splitter = RecursiveCharacterTextSplitter(chunk_size = 600, chunk_overlap = 50)
    text_splitter = RecursiveCharacterTextSplitter(
        chunk_size = chunk_size, 
        chunk_overlap = chunk_overlap)
    doc_splits = text_splitter.split_documents(pages)
    return doc_splits


# Create vector database
def create_db(splits, collection_name):
    embedding = HuggingFaceEmbeddings()
    new_client = chromadb.EphemeralClient()
    vectordb = Chroma.from_documents(
        documents=splits,
        embedding=embedding,
        client=new_client,
        collection_name=collection_name,
        # persist_directory=default_persist_directory
    )
    return vectordb


# Load vector database
def load_db():
    embedding = HuggingFaceEmbeddings()
    vectordb = Chroma(
        # persist_directory=default_persist_directory, 
        embedding_function=embedding)
    return vectordb


# Initialize langchain LLM chain
def initialize_llmchain(llm_model, temperature, max_tokens, top_k, vector_db, progress=gr.Progress()):
    progress(0.1, desc="Initializing HF tokenizer...")
    # HuggingFacePipeline uses local model
    # Note: it will download model locally...
    # tokenizer=AutoTokenizer.from_pretrained(llm_model)
    # progress(0.5, desc="Initializing HF pipeline...")
    # pipeline=transformers.pipeline(
    #     "text-generation",
    #     model=llm_model,
    #     tokenizer=tokenizer,
    #     torch_dtype=torch.bfloat16,
    #     trust_remote_code=True,
    #     device_map="auto",
    #     # max_length=1024,
    #     max_new_tokens=max_tokens,
    #     do_sample=True,
    #     top_k=top_k,
    #     num_return_sequences=1,
    #     eos_token_id=tokenizer.eos_token_id
    #     )
    # llm = HuggingFacePipeline(pipeline=pipeline, model_kwargs={'temperature': temperature})
    
    # HuggingFaceHub uses HF inference endpoints
    progress(0.5, desc="Initializing HF Hub...")
    # Use of trust_remote_code as model_kwargs
    # Warning: langchain issue
    # URL: https://github.com/langchain-ai/langchain/issues/6080
    if llm_model == "mistralai/Mixtral-8x7B-Instruct-v0.1":
        llm = HuggingFaceEndpoint(
            repo_id=llm_model, 
            # model_kwargs={"temperature": temperature, "max_new_tokens": max_tokens, "top_k": top_k, "load_in_8bit": True}
            temperature = temperature,
            max_new_tokens = max_tokens,
            top_k = top_k,
            load_in_8bit = True,
        )
    elif llm_model in ["HuggingFaceH4/zephyr-7b-gemma-v0.1","mosaicml/mpt-7b-instruct"]:
        raise gr.Error("LLM model is too large to be loaded automatically on free inference endpoint")
        llm = HuggingFaceEndpoint(
            repo_id=llm_model, 
            temperature = temperature,
            max_new_tokens = max_tokens,
            top_k = top_k,
        )
    elif llm_model == "microsoft/phi-2":
        # raise gr.Error("phi-2 model requires 'trust_remote_code=True', currently not supported by langchain HuggingFaceHub...")
        llm = HuggingFaceEndpoint(
            repo_id=llm_model, 
            # model_kwargs={"temperature": temperature, "max_new_tokens": max_tokens, "top_k": top_k, "trust_remote_code": True, "torch_dtype": "auto"}
            temperature = temperature,
            max_new_tokens = max_tokens,
            top_k = top_k,
            trust_remote_code = True,
            torch_dtype = "auto",
        )
    elif llm_model == "TinyLlama/TinyLlama-1.1B-Chat-v1.0":
        llm = HuggingFaceEndpoint(
            repo_id=llm_model, 
            # model_kwargs={"temperature": temperature, "max_new_tokens": 250, "top_k": top_k}
            temperature = temperature,
            max_new_tokens = 250,
            top_k = top_k,
        )
    elif llm_model == "meta-llama/Llama-2-7b-chat-hf":
        raise gr.Error("Llama-2-7b-chat-hf model requires a Pro subscription...")
        llm = HuggingFaceEndpoint(
            repo_id=llm_model, 
            # model_kwargs={"temperature": temperature, "max_new_tokens": max_tokens, "top_k": top_k}
            temperature = temperature,
            max_new_tokens = max_tokens,
            top_k = top_k,
        )
    else:
        llm = HuggingFaceEndpoint(
            repo_id=llm_model, 
            # model_kwargs={"temperature": temperature, "max_new_tokens": max_tokens, "top_k": top_k, "trust_remote_code": True, "torch_dtype": "auto"}
            # model_kwargs={"temperature": temperature, "max_new_tokens": max_tokens, "top_k": top_k}
            temperature = temperature,
            max_new_tokens = max_tokens,
            top_k = top_k,
        )
    
    progress(0.75, desc="Defining buffer memory...")
    memory = ConversationBufferMemory(
        memory_key="chat_history",
        output_key='answer',
        return_messages=True
    )
    # retriever=vector_db.as_retriever(search_type="similarity", search_kwargs={'k': 3})
    retriever=vector_db.as_retriever()
    progress(0.8, desc="Defining retrieval chain...")
    qa_chain = ConversationalRetrievalChain.from_llm(
        llm,
        retriever=retriever,
        chain_type="stuff", 
        memory=memory,
        # combine_docs_chain_kwargs={"prompt": your_prompt})
        return_source_documents=True,
        #return_generated_question=False,
        verbose=False,
    )
    progress(0.9, desc="Done!")
    return qa_chain


# Generate collection name for vector database
#  - Use filepath as input, ensuring unicode text
def create_collection_name(filepath):
    # Extract filename without extension
    collection_name = Path(filepath).stem
    # Fix potential issues from naming convention
    ## Remove space
    collection_name = collection_name.replace(" ","-") 
    ## ASCII transliterations of Unicode text
    collection_name = unidecode(collection_name)
    ## Remove special characters
    #collection_name = re.findall("[\dA-Za-z]*", collection_name)[0]
    collection_name = re.sub('[^A-Za-z0-9]+', '-', collection_name)
    ## Limit length to 50 characters
    collection_name = collection_name[:50]
    ## Minimum length of 3 characters
    if len(collection_name) < 3:
        collection_name = collection_name + 'xyz'
    ## Enforce start and end as alphanumeric character
    if not collection_name[0].isalnum():
        collection_name = 'A' + collection_name[1:]
    if not collection_name[-1].isalnum():
        collection_name = collection_name[:-1] + 'Z'
    print('Filepath: ', filepath)
    print('Collection name: ', collection_name)
    return collection_name


# Initialize database
def initialize_database(list_file_obj, chunk_size, chunk_overlap, progress=gr.Progress()):
    # Create list of documents (when valid)
    list_file_path = [x.name for x in list_file_obj if x is not None]
    # Create collection_name for vector database
    progress(0.1, desc="Creating collection name...")
    collection_name = create_collection_name(list_file_path[0])
    progress(0.25, desc="Loading document...")
    # Load document and create splits
    doc_splits = load_doc(list_file_path, chunk_size, chunk_overlap)
    # Create or load vector database
    progress(0.5, desc="Generating vector database...")
    # global vector_db
    vector_db = create_db(doc_splits, collection_name)
    progress(0.9, desc="Done!")
    return vector_db, collection_name, "Complete!"


def initialize_LLM(llm_option, llm_temperature, max_tokens, top_k, vector_db, progress=gr.Progress()):
    # print("llm_option",llm_option)
    llm_name = list_llm[llm_option]
    print("llm_name: ",llm_name)
    qa_chain = initialize_llmchain(llm_name, llm_temperature, max_tokens, top_k, vector_db, progress)
    return qa_chain, "Complete!"


def format_chat_history(message, chat_history):
    formatted_chat_history = []
    for user_message, bot_message in chat_history:
        formatted_chat_history.append(f"User: {user_message}")
        formatted_chat_history.append(f"Assistant: {bot_message}")
    return formatted_chat_history
    

def conversation(qa_chain, message, history):
    formatted_chat_history = format_chat_history(message, history)
    #print("formatted_chat_history",formatted_chat_history)
   
    # Generate response using QA chain
    response = qa_chain({"question": message, "chat_history": formatted_chat_history})
    response_answer = response["answer"]
    if response_answer.find("Helpful Answer:") != -1:
        response_answer = response_answer.split("Helpful Answer:")[-1]
    response_sources = response["source_documents"]
    response_source1 = response_sources[0].page_content.strip()
    response_source2 = response_sources[1].page_content.strip()
    response_source3 = response_sources[2].page_content.strip()
    # Langchain sources are zero-based
    response_source1_page = response_sources[0].metadata["page"] + 1
    response_source2_page = response_sources[1].metadata["page"] + 1
    response_source3_page = response_sources[2].metadata["page"] + 1
    # print ('chat response: ', response_answer)
    # print('DB source', response_sources)
    
    # Append user message and response to chat history
    new_history = history + [(message, response_answer)]
    # return gr.update(value=""), new_history, response_sources[0], response_sources[1] 
    return qa_chain, gr.update(value=""), new_history, response_source1, response_source1_page, response_source2, response_source2_page, response_source3, response_source3_page
    

def upload_file(file_obj):
    list_file_path = []
    for idx, file in enumerate(file_obj):
        file_path = file_obj.name
        list_file_path.append(file_path)
    # print(file_path)
    # initialize_database(file_path, progress)
    return list_file_path


def demo():
    with gr.Blocks(theme="base") as demo:
        vector_db = gr.State()
        qa_chain = gr.State()
        collection_name = gr.State()
        
        gr.Markdown(
        """<center><h2>PDF-based chatbot</center></h2>
        <h3>Ask any questions about your PDF documents</h3>""")
        gr.Markdown(
        """<b>Note:</b> CypherReadPDF is an advanced tool for exploring and analyzing PDF documents.\
        Using AI models like LLaMA, it allows users to upload PDFs, extract key information, and ask interactive questions about the content. 
        The user interface guides users through the analysis process, while conversational memory ensures answers consider past questions, with document references for clarity.<br>
        <br><b>Warning:</b> This space uses the free CPU Basic hardware from Hugging Face. Some steps and LLM models used below (free inference endpoints) can take some time to generate a reply.
        """)
        
        with gr.Tab("Step 1 - Upload PDF"):
            with gr.Row():
                document = gr.Files(height=100, file_count="multiple", file_types=["pdf"], interactive=True, label="Upload your PDF documents (single or multiple)")
                # upload_btn = gr.UploadButton("Loading document...", height=100, file_count="multiple", file_types=["pdf"], scale=1)
        
        with gr.Tab("Step 2 - Process document"):
            with gr.Row():
                db_btn = gr.Radio(["ChromaDB"], label="Vector database type", value = "ChromaDB", type="index", info="Choose your vector database")
            with gr.Accordion("Advanced options - Document text splitter", open=False):
                with gr.Row():
                    slider_chunk_size = gr.Slider(minimum = 100, maximum = 1000, value=600, step=20, label="Chunk size", info="Chunk size", interactive=True)
                with gr.Row():
                    slider_chunk_overlap = gr.Slider(minimum = 10, maximum = 200, value=40, step=10, label="Chunk overlap", info="Chunk overlap", interactive=True)
            with gr.Row():
                db_progress = gr.Textbox(label="Vector database initialization", value="None")
            with gr.Row():
                db_btn = gr.Button("Generate vector database")
            
        with gr.Tab("Step 3 - Initialize QA chain"):
            with gr.Row():
                llm_btn = gr.Radio(list_llm_simple, \
                    label="LLM models", value = list_llm_simple[0], type="index", info="Choose your LLM model")
            with gr.Accordion("Advanced options - LLM model", open=False):
                with gr.Row():
                    slider_temperature = gr.Slider(minimum = 0.01, maximum = 1.0, value=0.7, step=0.1, label="Temperature", info="Model temperature", interactive=True)
                with gr.Row():
                    slider_maxtokens = gr.Slider(minimum = 224, maximum = 4096, value=1024, step=32, label="Max Tokens", info="Model max tokens", interactive=True)
                with gr.Row():
                    slider_topk = gr.Slider(minimum = 1, maximum = 10, value=3, step=1, label="top-k samples", info="Model top-k samples", interactive=True)
            with gr.Row():
                llm_progress = gr.Textbox(value="None",label="QA chain initialization")
            with gr.Row():
                qachain_btn = gr.Button("Initialize Question Answering chain")

        with gr.Tab("Step 4 - Chatbot"):
            chatbot = gr.Chatbot(height=300)
            with gr.Accordion("Advanced - Document references", open=False):
                with gr.Row():
                    doc_source1 = gr.Textbox(label="Reference 1", lines=2, container=True, scale=20)
                    source1_page = gr.Number(label="Page", scale=1)
                with gr.Row():
                    doc_source2 = gr.Textbox(label="Reference 2", lines=2, container=True, scale=20)
                    source2_page = gr.Number(label="Page", scale=1)
                with gr.Row():
                    doc_source3 = gr.Textbox(label="Reference 3", lines=2, container=True, scale=20)
                    source3_page = gr.Number(label="Page", scale=1)
            with gr.Row():
                msg = gr.Textbox(placeholder="Type message (e.g. 'What is this document about?')", container=True)
            with gr.Row():
                submit_btn = gr.Button("Submit message")
                clear_btn = gr.ClearButton([msg, chatbot], value="Clear conversation")
            
        # Preprocessing events
        #upload_btn.upload(upload_file, inputs=[upload_btn], outputs=[document])
        db_btn.click(initialize_database, \
            inputs=[document, slider_chunk_size, slider_chunk_overlap], \
            outputs=[vector_db, collection_name, db_progress])
        qachain_btn.click(initialize_LLM, \
            inputs=[llm_btn, slider_temperature, slider_maxtokens, slider_topk, vector_db], \
            outputs=[qa_chain, llm_progress]).then(lambda:[None,"",0,"",0,"",0], \
            inputs=None, \
            outputs=[chatbot, doc_source1, source1_page, doc_source2, source2_page, doc_source3, source3_page], \
            queue=False)

        # Chatbot events
        msg.submit(conversation, \
            inputs=[qa_chain, msg, chatbot], \
            outputs=[qa_chain, msg, chatbot, doc_source1, source1_page, doc_source2, source2_page, doc_source3, source3_page], \
            queue=False)
        submit_btn.click(conversation, \
            inputs=[qa_chain, msg, chatbot], \
            outputs=[qa_chain, msg, chatbot, doc_source1, source1_page, doc_source2, source2_page, doc_source3, source3_page], \
            queue=False)
        clear_btn.click(lambda:[None,"",0,"",0,"",0], \
            inputs=None, \
            outputs=[chatbot, doc_source1, source1_page, doc_source2, source2_page, doc_source3, source3_page], \
            queue=False)
    demo.queue().launch(debug=True)


if __name__ == "__main__":
    demo()