Jiranuwat commited on
Commit
20f33b6
·
1 Parent(s): bbe1f90

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +165 -0
app.py ADDED
@@ -0,0 +1,165 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import pandas as pd
2
+ import streamlit as st
3
+ import numpy as np
4
+ from scipy.integrate import odeint
5
+ import matplotlib.pyplot as plt
6
+ from sklearn.metrics import mean_absolute_percentage_error
7
+ import warnings
8
+ warnings.filterwarnings("ignore")
9
+
10
+ #read files
11
+ data = pd.read_csv('owid-monkeypox-data.csv')
12
+ data = data[['location','iso_code','date','new_cases','total_cases','new_deaths','total_deaths']]
13
+
14
+ pop = pd.read_csv('API_SP.POP.TOTL_DS2_en_csv_v2_4578059.csv')
15
+ #preprocessiong data
16
+ all_location = {}
17
+ for i in data['iso_code'].unique():
18
+ all_location[i] = data[data['iso_code'] == i].reset_index(drop=True)
19
+
20
+ popu = pop[['Country Code','2021']].to_dict('index')
21
+ pop_dict = {}
22
+ for i in popu.values():
23
+ pop_dict[i['Country Code']] = i['2021']
24
+
25
+ pop_dict['GLP'] = 400000
26
+ pop_dict['MTQ'] = 376480
27
+ pop_dict['OWID_WRL'] = 7836630792
28
+
29
+ code = dict(data.groupby('location')['iso_code'].unique())
30
+
31
+ # SIR model differential equations.
32
+ def deriv(x, t, beta, gamma):
33
+ s, i, r = x
34
+ dsdt = -beta * s * i
35
+ didt = beta * s * i - gamma * i
36
+ drdt = gamma * i
37
+ return [dsdt, didt, drdt]
38
+
39
+ #plot model
40
+ def plotdata(t, s, i,r,R0, e=None):
41
+ # plot the data
42
+ fig = plt.figure(figsize=(12,6))
43
+ ax = [fig.add_subplot(221, axisbelow=True),
44
+ fig.add_subplot(223),
45
+ fig.add_subplot(122)]
46
+
47
+ ax[0].plot(t, s, lw=3, label='Fraction Susceptible')
48
+ ax[0].plot(t, i, lw=3, label='Fraction Infective')
49
+ ax[0].plot(t, r, lw=3, label='Recovered')
50
+ ax[0].set_title('Susceptible and Recovered Populations')
51
+ ax[0].set_xlabel('Time /days')
52
+ ax[0].set_ylabel('Fraction')
53
+
54
+ ax[1].plot(t, i, lw=3, label='Infective')
55
+ ax[1].set_title('Infectious Population')
56
+ if e is not None: ax[1].plot(t, e, lw=3, label='Exposed')
57
+ ax[1].set_ylim(0, 1.0)
58
+ ax[1].set_xlabel('Time /days')
59
+ ax[1].set_ylabel('Fraction')
60
+
61
+ ax[2].plot(s, i, lw=3, label='s, i trajectory')
62
+ ax[2].plot([1/R0, 1/R0], [0, 1], '--', lw=3, label='di/dt = 0')
63
+ ax[2].plot(s[0], i[0], '.', ms=20, label='Initial Condition')
64
+ ax[2].plot(s[-1], i[-1], '.', ms=20, label='Final Condition')
65
+ ax[2].set_title('State Trajectory')
66
+ ax[2].set_aspect('equal')
67
+ ax[2].set_ylim(0, 1.05)
68
+ ax[2].set_xlim(0, 1.05)
69
+ ax[2].set_xlabel('Susceptible')
70
+ ax[2].set_ylabel('Infectious')
71
+
72
+ for a in ax:
73
+ a.grid(True)
74
+ a.legend()
75
+
76
+ plt.tight_layout()
77
+
78
+ return fig
79
+
80
+ def compare_plt(country,i,pop):
81
+ fig = plt.figure(figsize=(12,6))
82
+ ax = [fig.add_subplot(121, axisbelow=True),fig.add_subplot(122)]
83
+ ax[0].set_title('Monkeypox confirmed cases')
84
+ ax[0].plot(all_location[country]['total_cases'],lw=3,label='Infective')
85
+ ax[0].set_xlabel('Days')
86
+ ax[0].set_ylabel('Number of cases')
87
+ ax[0].legend()
88
+
89
+ scaler = all_location[country]['total_cases'].apply(lambda x : x/pop)
90
+ ax[1].set_title('Monkeypox confirmed cases compare with model')
91
+ ax[1].plot(scaler,lw=3,label='Real Infective')
92
+ ax[1].plot(i,lw=3,label='SIR model Infective')
93
+ ax[1].set_ylim(0,0.00005)
94
+ ax[1].set_xlim(0,200)
95
+ ax[1].set_xlabel('Days')
96
+ ax[1].set_ylabel('Fraction Number of cases')
97
+ ax[1].legend()
98
+ plt.tight_layout()
99
+
100
+ return fig
101
+
102
+ #final model
103
+ def SIR(country,R0,t_infective,pop):
104
+ #R0 = 0.57 - 1.25
105
+
106
+ # parameter values
107
+ R0 = R0
108
+ t_infective = t_infective
109
+
110
+ # initial number of infected and recovered individuals
111
+ i_initial = all_location[country]['total_cases'].iloc[0]/pop
112
+ r_initial = 0.00
113
+ s_initial = 1 - i_initial - r_initial
114
+
115
+ gamma = 1/t_infective
116
+ beta = R0*gamma
117
+
118
+ t = np.linspace(0, 3000, 3000)
119
+ x_initial = s_initial, i_initial, r_initial
120
+ soln = odeint(deriv, x_initial, t, args=(beta, gamma))
121
+ s, i, r = soln.T
122
+ e = None
123
+
124
+ scaler = all_location[country]['total_cases'].apply(lambda x : x/pop)
125
+ rangee = len(all_location[country]['total_cases'])
126
+ rmpe = mean_absolute_percentage_error(scaler,i[0:rangee])*100
127
+
128
+
129
+ return R0,t_infective,beta,gamma,rmpe,plotdata(t, s, i,r,R0),compare_plt(country,i,pop)
130
+
131
+ def main():
132
+ st.title("SIR Model for Monkeypox in Thailand")
133
+ st.subheader("Latest updated : 10/02/2023")
134
+ st.subheader("Reference : https://jckantor.github.io/CBE30338/03.09-COVID-19.html")
135
+ st.caption("Display graph of SIR model of monkeypox and comparison between the model and actual data. Try to find the best R0 that fit for the actual data (lowest MAPE).")
136
+
137
+ with st.form("questionaire"):
138
+ recovery = st.slider("How long Monkeypox last until recovery(days)? ", 14, 31, 21)
139
+ R0 = st.slider("Basic Reproduction Number (R0)", 0.57, 3.00, 0.57)# user's input
140
+ country_code = code["Thailand"][0]
141
+ pop = pop_dict[country_code]
142
+
143
+ # clicked==True only when the button is clicked
144
+ clicked = st.form_submit_button("Show Graph")
145
+ if clicked:
146
+
147
+ # Show SIR
148
+ SIR_param = SIR(country_code,R0,recovery,pop)
149
+
150
+ if SIR_param[0] <= 1:
151
+ a = 'No epidemic.'
152
+ else:
153
+ a = 'Epidemic has began.'
154
+
155
+ st.pyplot(SIR_param[-2])
156
+ st.pyplot(SIR_param[-1])
157
+ st.success("SIR model parameters of Thailand "+" is")
158
+ st.success("R0 (Basic Reproduction Number) = "+str(SIR_param[0])+' '+a)
159
+ st.success("Beta (Rate of transmission) = "+str(round(SIR_param[2],3)))
160
+ st.success("Gamma (Rate of Recovery) = "+str(round(SIR_param[3],3)))
161
+ st.success("MAPE = "+str(round(SIR_param[4],3))+"%")
162
+
163
+ # Run main()
164
+ if __name__ == "__main__":
165
+ main()