Spaces:
Sleeping
Sleeping
import torch | |
import gradio as gr | |
from transformers import pipeline | |
from transformers.pipelines.audio_utils import ffmpeg_read | |
MODEL_NAME = "openai/whisper-large-v3" | |
BATCH_SIZE = 8 | |
FILE_LIMIT_MB = 1000 | |
YT_LENGTH_LIMIT_S = 3600 # limit to 1 hour YouTube files | |
device = 0 if torch.cuda.is_available() else "cpu" | |
pipe = pipeline( | |
task="automatic-speech-recognition", | |
model=MODEL_NAME, | |
chunk_length_s=30, | |
device=device, | |
) | |
def transcribe(inputs): | |
if inputs is None: | |
raise gr.Error("No audio file submitted! Please upload or record an audio file before submitting your request.") | |
text = pipe(inputs, batch_size=BATCH_SIZE, generate_kwargs={"task": "transcribe"}, return_timestamps=True)["text"] | |
return text | |
demo = gr.Blocks() | |
mf_transcribe = gr.Interface( | |
fn=transcribe, | |
inputs=[ | |
gr.Audio(sources=["microphone"], type="filepath", scale=4), | |
], | |
outputs="text", | |
title="Whisper Large V3: Transcribe Audio", | |
description=( | |
"Transcribe long-form microphone or audio inputs with the click of a button! Demo uses the OpenAI Whisper" | |
f" checkpoint [{MODEL_NAME}](https://huggingface.co/{MODEL_NAME}) and 🤗 Transformers to transcribe audio files" | |
" of arbitrary length." | |
) | |
) | |
with demo: | |
gr.TabbedInterface([mf_transcribe], ["Microphone"]) | |
demo.launch() | |