File size: 10,594 Bytes
141b0a0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 |
import os
from datetime import datetime, timedelta
from typing import Dict, List
import pandas as pd
import tweepy
import praw
import googleapiclient.discovery
import pytumblr
from gnews import GNews
import requests
from bs4 import BeautifulSoup
import time
import math
class DataFetch:
def __init__(self):
# Load company list and set date range
self.end_date = datetime.now()
self.start_date = self.end_date - timedelta(days=1)
# Initialize API clients
self.tumblr_client = pytumblr.TumblrRestClient(
os.getenv("TUMBLR_CONSUMER_KEY"),
os.getenv("TUMBLR_CONSUMER_SECRET"),
os.getenv("TUMBLR_OAUTH_TOKEN"),
os.getenv("TUMBLR_OAUTH_SECRET")
)
twitter_auth = tweepy.OAuthHandler(os.getenv("TWITTER_API_KEY"), os.getenv("TWITTER_API_SECRET"))
twitter_auth.set_access_token(os.getenv("TWITTER_ACCESS_TOKEN"), os.getenv("TWITTER_ACCESS_TOKEN_SECRET"))
self.twitter_api = tweepy.API(twitter_auth)
self.reddit = praw.Reddit(
client_id=os.getenv("REDDIT_CLIENT_ID"),
client_secret=os.getenv("REDDIT_CLIENT_SECRET"),
user_agent="Sentiment Analysis Bot 1.0"
)
self.youtube = googleapiclient.discovery.build("youtube", "v3", developerKey=os.getenv("YOUTUBE_API_KEY"))
def load_company_list(self, file_path: str) -> List[str]:
self.company_list = pd.read_csv(file_path)['company_ticker'].tolist()
def collect_data(self) -> List[Dict]:
all_data = []
for company in self.company_list:
print(f"{company}:")
all_data.extend(self._collect_social_media_data(company))
all_data.extend(self._collect_news_data(company))
return all_data
def _collect_social_media_data(self, query: str) -> List[Dict]:
social_data = []
print("Collecting Reddit Data")
social_data.extend(self.collect_reddit_data(query))
print("Collecting YouTube Data")
social_data.extend(self.collect_youtube_data(query))
print("Collecting Tumblr Data")
social_data.extend(self.collect_tumblr_data(query))
return social_data
def _collect_news_data(self, query: str) -> List[Dict]:
news_data = []
print("Collecting Google News Data")
news_data.extend(self.collect_google_news(query))
print("Collecting Financial Times Data")
news_data.extend(self.collect_financial_times(query))
print("Collecting Bloomberg Data")
news_data.extend(self.collect_bloomberg(query))
print("Collecting Reuters Data")
news_data.extend(self.collect_reuters(query))
print("Collecting WSJ Data")
# news_data.extend(self.collect_wsj(query))
print("Collecting Serper Data - StockNews, Yahoo Finance, Insider Monkey, Investor's Business Daily, etc.")
news_data.extend(self.search_news(query))
return news_data
def collect_tumblr_data(self, query: str) -> List[Dict]:
posts = self.tumblr_client.tagged(query)
return [{"platform": "Tumblr", "company": query, "page_content": {
"title": post["blog"]["title"], "content": post["blog"]["description"]}} for post in posts]
def collect_twitter_data(self, query: str) -> List[Dict]:
tweets = []
for tweet in tweepy.Cursor(self.twitter_api.search_tweets, q=query, lang="en",
since=self.start_date, until=self.end_date).items(100):
tweets.append(tweet._json)
return [{"platform": "Twitter", "company": query, "page_content": tweet} for tweet in tweets]
def collect_reddit_data(self, query: str) -> List[Dict]:
posts = []
subreddit = self.reddit.subreddit("all")
for post in subreddit.search(query, sort="new", time_filter="day"):
post_date = datetime.fromtimestamp(post.created_utc)
if self.start_date <= post_date <= self.end_date:
posts.append({"platform": "Reddit", "company": query, "page_content": {
"title": post.title, "content": post.selftext}})
return posts
def collect_youtube_data(self, query: str) -> List[Dict]:
request = self.youtube.search().list(
q=query, type="video", part="id,snippet", maxResults=50,
publishedAfter=self.start_date.isoformat() + "Z", publishedBefore=self.end_date.isoformat() + "Z"
)
response = request.execute()
return [{"platform": "YouTube", "company": query, "page_content": {
"title": item["snippet"]["title"], "content": item["snippet"]["description"]}} for item in response['items']]
def collect_google_news(self, query: str) -> List[Dict]:
google_news = GNews(language='en', country='US', start_date=self.start_date, end_date=self.end_date)
articles = google_news.get_news(query)
return [{"platform": "Google News", "company": query, "page_content": {
"title": article["title"], "content": article["description"]}} for article in articles]
def collect_financial_times(self, query: str) -> List[Dict]:
url = f"https://www.ft.com/search?q={query}&dateTo={self.end_date.strftime('%Y-%m-%d')}&dateFrom={self.start_date.strftime('%Y-%m-%d')}"
response = requests.get(url)
soup = BeautifulSoup(response.content, 'html.parser')
articles = soup.find_all('div', class_='o-teaser__content')
return [{"platform": "Financial Times", "company": query, "page_content": {
"title": a.find('div', class_='o-teaser__heading').text.strip(),
"content": a.find('p', class_='o-teaser__standfirst').text.strip() if a.find('p', class_='o-teaser__standfirst') else ''
}} for a in articles]
def collect_bloomberg(self, query: str) -> List[Dict]:
url = f"https://www.bloomberg.com/search?query={query}"
response = requests.get(url)
soup = BeautifulSoup(response.content, 'html.parser')
articles = soup.find_all('div', class_='storyItem__aaf871c1')
return [{"platform": "Bloomberg", "company": query, "page_content": {
"title": a.find('a', class_='headline__3a97424d').text.strip(),
"content": a.find('p', class_='summary__483358e1').text.strip() if a.find('p', class_='summary__483358e1') else ''
}} for a in articles]
def collect_reuters(self, query: str) -> List[Dict]:
articles = []
base_url = "https://www.reuters.com/site-search/"
page = 1
while True:
url = f"{base_url}?blob={query}&page={page}"
response = requests.get(url)
soup = BeautifulSoup(response.content, 'html.parser')
results = soup.find_all('li', class_='search-result__item')
if not results:
break
for result in results:
date_elem = result.find('time', class_='search-result__timestamp')
if date_elem:
date = datetime.strptime(date_elem['datetime'], "%Y-%m-%dT%H:%M:%SZ")
if self.start_date <= date <= self.end_date:
articles.append({"platform": "Reuters", "company": query, "page_content": {
"title": result.find('h3', class_='search-result__headline').text.strip(),
"content": result.find('p', class_='search-result__excerpt').text.strip()
}})
elif date < self.start_date:
return articles
page += 1
time.sleep(1)
return articles
def collect_wsj(self, query: str) -> List[Dict]:
articles = []
base_url = "https://www.wsj.com/search"
page = 1
while True:
params = {
'query': query, 'isToggleOn': 'true', 'operator': 'AND', 'sort': 'date-desc',
'duration': 'custom', 'startDate': self.start_date.strftime('%Y/%m/%d'),
'endDate': self.end_date.strftime('%Y/%m/%d'), 'page': page
}
response = requests.get(base_url, params=params)
soup = BeautifulSoup(response.content, 'html.parser')
results = soup.find_all('article', class_='WSJTheme--story--XB4V2mLz')
if not results:
break
for result in results:
date_elem = result.find('p', class_='WSJTheme--timestamp--22sfkNDv')
if date_elem:
date = datetime.strptime(date_elem.text.strip(), "%B %d, %Y")
if self.start_date <= date <= self.end_date:
articles.append({"platform": "Wall Street Journal", "company": query, "page_content": {
"title": result.find('h3', class_='WSJTheme--headline--unZqjb45').text.strip(),
"content": result.find('p', class_='WSJTheme--summary--lmOXEsbN').text.strip()
}})
elif date < self.start_date:
return articles
page += 1
time.sleep(1)
return articles
def search_news(self, query: str,cnt=300) -> List[Dict]:
articles = []
num_results = cnt
headers = {
"X-API-KEY": os.getenv("SERP_API_KEY"),
"Content-Type": "application/json"
}
payload = {"q": f"{query} company news",
"num": num_results,
"dateRestrict": 14
}
response = requests.post(
"https://google.serper.dev/news",
headers=headers,
json=payload
)
# print(response)
if response.status_code == 200:
results = response.json().get("news", [])
for result in results:
articles.append({"platform": result["source"], "company": query, "page_content": {
"title": result["title"],
"content": result["snippet"]
}})
return articles
# Usage Example
if __name__ == "__main__":
analyzer = DataFetch("company_list.csv")
data = analyzer.collect_data()
# Here, data would contain all collected sentiment data for the given companies
|