Stock-Sentiment-Analysis / py /handle_files.py
Karthikeyen92's picture
Upload 19 files
141b0a0 verified
raw
history blame
3.91 kB
from datetime import datetime
import json
import os
import pickle
from typing import List
from langchain.schema import Document
import pandas as pd
def create_files(social_media_data):
folder_path = 'Stock Sentiment Analysis/files'
if not os.path.exists(folder_path):
os.makedirs(folder_path)
# Save dictionary to a file
with open(folder_path+'/social_media_data.json', 'w') as f:
json.dump(social_media_data, f)
# Convert the data to a pandas DataFrame
df = pd.DataFrame(social_media_data)
df.head()
# Exporting the data to a CSV file
file_path = folder_path+"/social_media_data.csv"
df.to_csv(file_path, index=False)
df.to_pickle(folder_path+"/social_media_data.pkl")
def fetch_social_media_data():
with open('Stock Sentiment Analysis/files/social_media_data.json', 'r') as file:
data = json.load(file)
social_media_document = []
for item in data:
social_media_document.append(Document(
page_content=str(item["page_content"]),
metadata={"platform":item["platform"],
"company":item["company"],
"ingestion_timestamp":datetime.now().isoformat(),
"word_count":len(item["page_content"]["content"])
}))
return social_media_document
def save_ingested_data(ingested_data):
# Save the list to a file
with open('Stock Sentiment Analysis/files/ingested_data.pkl', 'wb') as file:
pickle.dump(ingested_data, file)
def save_analysed_data(analysed_data):
# Save the list to a file
with open('Stock Sentiment Analysis/files/analysed_data.pkl', 'wb') as file:
pickle.dump(analysed_data, file)
def get_ingested_data():
# Load the list from the file
with open('Stock Sentiment Analysis/files/ingested_data.pkl', 'rb') as file:
loaded_documents = pickle.load(file)
return loaded_documents
def get_analysed_data():
# Load the list from the file
with open('Stock Sentiment Analysis/files/analysed_data.pkl', 'rb') as file:
loaded_documents = pickle.load(file)
return loaded_documents
def sample_documents(documents: List[Document], n: int) -> List[Document]:
"""
Samples `n` entries for each unique `"platform"` and `"company"` metadata combination from the input `Document[]`.
Args:
documents (List[Document]): The input list of `Document` objects.
n (int): The number of entries to sample for each unique metadata combination.
Returns:
List[Document]: A new list of `Document` objects, with `n` entries per unique metadata combination.
"""
# Create a dictionary to store the sampled documents per metadata combination
sampled_docs = {}
for doc in documents:
combo = (doc.metadata["platform"], doc.metadata["company"])
if combo not in sampled_docs:
sampled_docs[combo] = []
# Add the document to the list for its metadata combination, up to n entries
if len(sampled_docs[combo]) < n:
sampled_docs[combo].append(doc)
# Flatten the dictionary into a single list
return [doc for docs in sampled_docs.values() for doc in docs]
def to_documents(data) -> List[Document]:
social_media_document = []
for item in data:
social_media_document.append(Document(
page_content=str(item["page_content"]),
metadata={"platform":item["platform"],
"company":item["company"],
"ingestion_timestamp":datetime.now().isoformat(),
"word_count":len(item["page_content"]["content"])
}))
return social_media_document